Resumen
Herein, we have demonstrated highly sensitive real-time biospecific detection of a protein marker of hepatitis C?the core antigen of hepatitis C virus (HCVcoreAg)?using a nanowire (NW) biosensor. The primary element of the NW-biosensor is a chip with p-type conductance, bearing silicon-on-insulator (SOI) nanowire structures on its surface. The nanowire structures are fabricated by gas-plasma treatment and electron beam lithography. The detection specificity was provided by sensitization of the sensor surface with aptamers against HCVcoreAg. The influence of buffer pH on the sensor response signal was studied. The effect of reverse polarity of the biosensor response signal with change from the acidic buffer pH to the neutral one was found. The lowest detectable HCVcoreAg concentration was determined to be 2.0 × 10-15 M in both acidic (pH 5.1) and neutral (pH 7.4) buffer solution. The proposed aptamer-sensitized sensor was also successfully applied to detect HCVcoreAg in serum samples of hepatitis C patients.