Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Algorithms  /  Vol: 15 Par: 3 (2022)  /  Artículo
ARTÍCULO
TITULO

Prediction of Harvest Time of Apple Trees: An RNN-Based Approach

Tiago Boechel    
Lucas Micol Policarpo    
Gabriel de Oliveira Ramos    
Rodrigo da Rosa Righi and Dhananjay Singh    

Resumen

In the field of agricultural research, Machine Learning (ML) has been used to increase agricultural productivity and minimize its environmental impact, proving to be an essential technique to support decision making. Accurate harvest time prediction is a challenge for fruit production in a sustainable manner, which could eventually reduce food waste. Linear models have been used to estimate period duration; however, they present variability when used to estimate the chronological time of apple tree stages. This study proposes the PredHarv model, which is a machine learning model that uses Recurrent Neural Networks (RNN) to predict the start date of the apple harvest, given the weather conditions related to the temperature expected for the period. Predictions are made from the phenological phase of the beginning of flowering, using a multivariate approach, based on the time series of phenology and meteorological data. The computational model contributes to anticipating information about the harvest date, enabling the grower to better plan activities, avoiding costs, and consequently improving productivity. We developed a prototype of the model and performed experiments with real datasets from agricultural institutions. We evaluated the metrics, and the results obtained in evaluation scenarios demonstrate that the model is efficient, has good generalizability, and is capable of improving the accuracy of the prediction results.

 Artículos similares

       
 
Miguel D. Ferro, Elsa Lopes, Marta Afonso, Augusto Peixe, Francisco M. Rodrigues and Maria F. Duarte    
The phenolic composition of olive fruits represents a vast and unique source of health beneficial molecules due to the presence of specific phenolic compounds (PCs), such as verbascoside (VERB), oleuropein (OLE) and its derivative molecules. Despite of b... ver más
Revista: Applied Sciences

 
Juan He, Susu Zhu, Bingquan Chu, Xiulin Bai, Qinlin Xiao, Chu Zhang and Jinyan Gong    
Rapid and nondestructive determination of quality attributes in fresh and dry Chrysanthemum morifolium is of great importance for quality sorting and monitoring during harvest and trade. Near-infrared hyperspectral imaging covering the spectral range of ... ver más
Revista: Applied Sciences