Redirigiendo al acceso original de articulo en 21 segundos...
ARTÍCULO
TITULO

Effects of Blade Number on the Propulsion and Vortical Structures of Pre-Swirl Stator Pump-Jet Propulsors

Han Li    
Qiaogao Huang    
Guang Pan    
Xinguo Dong and Fuzheng Li    

Resumen

Reducing the noise of the underwater propulsor is gaining more and more attention in the marine industry. The pump-jet propulsor (PJP) is an extraordinary innovation in marine propulsion applications. This paper inspects the effects of blade number on a pre-swirl stator pump-jet propulsor (PJP) quantitatively and qualitatively. The numerical calculations are conducted by IDDES and ELES, where the ELES is only adopted to capture the vortical structures after refining the mesh. The numerical results show good agreement with the experiment. Detailed discussions of the propulsion, the features of thrust fluctuation in time and frequency domains, and the flow field are involved. Based on the ELES results, the vortices in the PJP flow field and the interactions between the vortices of the stator, rotor, and duct are presented. Results suggest that, though changing the blade number under a constant solidity does not affect the propulsion, it has considerable effects on the thrust fluctuation of PJP. The wakes of the stator and rotor are also notably changed. Increasing the stator blade numbers has significantly weakened the high-intensity vortices in the stator wake and, hence, the interaction with the rotor wake vortices. The hub vortices highly depend upon the wake vortices of the rotor. The hub vortices are considerably broken by upstream wake vortices when the load per rotor blade is high. In summary, the blade number is also vital for the further PJP design, particularly when the main concerns are exciting force and noise performance.

 Artículos similares

       
 
Lingzhi Wang and Taoyong Su    
An electrically controlled rotor (ECR) is a kind of swashplateless rotor that implements the primary control via the trailing-edge flap system instead of a swashplate and demonstrates great potential in vibration reduction and noise alleviation. In this ... ver más
Revista: Aerospace

 
Nur Syafiqah Jamaluddin, Alper Celik, Kabilan Baskaran, Djamel Rezgui and Mahdi Azarpeyvand    
This paper presents an experimental investigation into the effects of turbulence ingestion on the aerodynamic noise characteristics of rotor blades in edgewise flight. A small-scaled, two-bladed rotor was used in the study. The test utilised two turbulen... ver más
Revista: Aerospace

 
Qifeng Jiang, Chen Liu, Gérard Bois and Yaguang Heng    
Straight radial impeller disc pumps are widely used in several industrial applications for hard-to-pump working flow media, such as two-phase inlet conditions, either including non-miscible bubbles or solid particles with a high concentration within the ... ver más

 
Yiming Wang, Yun Chen, Gang Xue, Tianxu Zhang and Yanjun Liu    
Combining one-dimensional parameter optimization and three-dimensional modeling optimization, a 30 kW radial inflow turbine for ocean thermal energy conversion was designed. In this paper, the effects of blade tip clearance, blade number, twist angle, an... ver más

 
Dimitra Anevlavi, Spiros Zafeiris, George Papadakis and Kostas Belibassakis    
This work addresses the effects of blade tip-rake reformation on the performance of marine propellers using a low-cost potential-based vortex-lattice method (VLM) and the high fidelity artificial compressibility CFD-RANS solver MaPFlow. The primary focus... ver más