Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Applied Sciences  /  Vol: 12 Par: 7 (2022)  /  Artículo
ARTÍCULO
TITULO

Attention-Based RU-BiLSTM Sentiment Analysis Model for Roman Urdu

Bilal Ahmed Chandio    
Ali Shariq Imran    
Maheen Bakhtyar    
Sher Muhammad Daudpota and Junaid Baber    

Resumen

Deep neural networks have emerged as a leading approach towards handling many natural language processing (NLP) tasks. Deep networks initially conquered the problems of computer vision. However, dealing with sequential data such as text and sound was a nightmare for such networks as traditional deep networks are not reliable in preserving contextual information. This may not harm the results in the case of image processing where we do not care about the sequence, but when we consider the data collected from text for processing, such networks may trigger disastrous results. Moreover, establishing sentence semantics in a colloquial text such as Roman Urdu is a challenge. Additionally, the sparsity and high dimensionality of data in such informal text have encountered a significant challenge for building sentence semantics. To overcome this problem, we propose a deep recurrent architecture RU-BiLSTM based on bidirectional LSTM (BiLSTM) coupled with word embedding and an attention mechanism for sentiment analysis of Roman Urdu. Our proposed model uses the bidirectional LSTM to preserve the context in both directions and the attention mechanism to concentrate on more important features. Eventually, the last dense softmax output layer is used to acquire the binary and ternary classification results. We empirically evaluated our model on two available datasets of Roman Urdu, i.e., RUECD and RUSA-19. Our proposed model outperformed the baseline models on many grounds, and a significant improvement of 6% to 8% is achieved over baseline models.

 Artículos similares

       
 
Julia Figueroa-Martínez, Dulcenombre M. Saz-Navarro, Aurelio López-Fernández, Domingo S. Rodríguez-Baena and Francisco A. Gómez-Vela    
Gene networks have become a powerful tool for the comprehensive examination of gene expression patterns. Thanks to these networks generated by means of inference algorithms, it is possible to study different biological processes and even identify new bio... ver más
Revista: Informatics

 
Yanjun Li, Takaaki Yoshimura, Yuto Horima and Hiroyuki Sugimori    
The detection of coronary artery stenosis is one of the most important indicators for the diagnosis of coronary artery disease. However, stenosis in branch vessels is often difficult to detect using computer-aided systems and even radiologists because of... ver más
Revista: Algorithms

 
Malinka Ivanova, Gabriela Grosseck and Carmen Holotescu    
The penetration of intelligent applications in education is rapidly increasing, posing a number of questions of a different nature to the educational community. This paper is coming to analyze and outline the influence of artificial intelligence (AI) on ... ver más
Revista: Informatics

 
Padmanabhan Balasubramanian and Nikos E. Mastorakis    
Multiplication is a fundamental arithmetic operation in electronic processing units such as microprocessors and digital signal processors as it plays an important role in various computational tasks and applications. There exist many designs of synchrono... ver más

 
Hamed Taherdoost and Mitra Madanchian    
In recent years, artificial intelligence (AI) has seen remarkable advancements, stretching the limits of what is possible and opening up new frontiers. This comparative review investigates the evolving landscape of AI advancements, providing a thorough e... ver más
Revista: AI