Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 6 (2023)  /  Artículo
ARTÍCULO
TITULO

Research on Multi-Scale Feature Extraction and Working Condition Classification Algorithm of Lead-Zinc Ore Flotation Foam

Xiaoping Jiang    
Huilin Zhao    
Junwei Liu    
Suliang Ma and Mingzhen Hu    

Resumen

To address the problems of difficult online monitoring, low recognition efficiency and the subjectivity of work condition identification in mineral flotation processes, a foam flotation performance state recognition method is developed to improve the issues mentioned above. This method combines multi-dimensional CNN (convolutional neural networks) characteristics and improved LBP (local binary patterns) characteristics. We have divided the foam flotation conditions into six categories. First, the multi-directional and multi-scale selectivity and anisotropy of nonsubsampled shearlet transform (NSST) are used to decompose the flotation foam images at multiple frequency scales, and a multi-channel CNN network is designed to extract static features from the images at different frequencies. Then, the flotation video image sequences are rotated and dynamic features are extracted by the LBP-TOP (local binary patterns from three orthogonal planes), and the CNN-extracted static picture features are fused with the LBP dynamic video features. Finally, classification decisions are made by a PSO-RVFLNs (particle swarm optimization-random vector functional link networks) algorithm to accurately identify the foam flotation performance states. Experimental results show that the detection accuracy of the new method is significantly improved by 4.97% and 6.55%, respectively, compared to the single CNN algorithm and the traditional LBP algorithm, respectively. The accuracy of flotation performance state classification was as high as 95.17%, and the method reduced manual intervention, thus improving production efficiency.