Resumen
The main goal of the paper is to compare the effects of the wave spectrum, computed using the Discrete Interaction Approximation (DIA) and the Webb?Resio?Tracy (WRT) methods, on statistical wave properties such as skewness and kurtosis in the context of large ocean waves. The statistical properties are obtained by integrating the three-dimensional free-surface Euler equations with a high-order spectral method combined with a phenomenological filter to account for the energy dissipation due to breaking waves. In addition, we investigate the minimum spatial domain size required to obtain meaningful statistical wave properties. The example we chose to illustrate the influence of the wave spectrum on statistical wave properties is that of a hindcast of the sea state that occurred when the extreme Draupner wave was recorded. The numerical simulations are performed over a physical domain of size 4.13 km × 4.13 km. The results indicate that statistical properties must be computed over an area of at least 4 km2
2
. The results also suggest that selecting a more computationally expensive WRT method does not affect the statistical values to a great extent. The most noticeable effect is due to the energy dissipation filter that is applied. It is concluded that selecting the WRT or the DIA algorithm for computing the wave spectrum needed for the numerical simulations does not lead to major differences in the statistical wave properties. However, more accurate energy dissipation mechanisms due to wave breaking are needed.