Redirigiendo al acceso original de articulo en 18 segundos...
ARTÍCULO
TITULO

Wave-Induced Seafloor Instability in the Yellow River Delta: Flume Experiments

Xiuhai Wang    
Chaoqi Zhu and Hongjun Liu    

Resumen

Geological disasters of seabed instability are widely distributed in the Yellow River Delta, posing a serious threat to the safety of offshore oil platforms and submarine pipelines. Waves act as one of the main factors causing the frequent occurrence of instabilities in the region. In order to explore the soil failure mode and the law for pore pressure response of the subaqueous Yellow River Delta under wave actions, in-lab flume tank experiments were conducted in this paper. In the experiments, wave loads were applied with a duration of 1 hour each day for 7 consecutive days; pore water pressure data of the soil under wave action were acquired, and penetration strength data of the sediments were determined after wave action. The results showed that the fine-grained seabed presented an arc-shaped oscillation failure form under wave action. In addition, the sliding surface firstly became deeper and then shallower with the wave action. Interestingly, the distribution of pores substantially coincided with that of sliding surfaces. For the first time, gas holes were identified along with their positioning and angle with respect to the sediments. The presence of gas may serve as a primer for submarine slope failures. The wave process can lead to an increase in the excess pore pressure, while the anti-liquefaction capacity of the sediments was improved, causing a decrease in the excess pore pressure resulting from the next wave process. Without new depositional sediments, the existing surface sediments can form high-strength formation under wave actions. The test results may provide a reference for numerical simulations and engineering practice.

 Artículos similares

       
 
Aleksey Marchenko and Nataliya Marchenko    
Changes in the masses of icebergs due to deterioration processes affect the drift of icebergs and should be taken into account when assessing iceberg risks in the areas of offshore development. In 2022 and 2023, eight laboratory experiments were carried ... ver más

 
Zhen Yao, Jie Chen, Changbo Jiang, Hai Liang, Zhiyuan Wu, Bin Deng, Yuannan Long and Chen Bian    
This study utilized 50 laboratory experiments to document the evolution of coral beaches under varying regular wave conditions, including five distinct wave periods and ten wave heights. Both the type of equilibrium beach and the shape of sand bars were ... ver más

 
Jian Qin, Zhenquan Zhang, Xuening Song, Shuting Huang, Yanjun Liu and Gang Xue    
In order to enhance the power generation efficiency and reliability of wave energy converters (WECs), an enclosed inertial WEC with a magnetic nonlinear stiffness mechanism (nonlinear EIWEC) is proposed in this paper. A mathematical model of the nonlinea... ver más

 
Jun Wang, Bo Yang, Bingchen Liang, Zai-Jin You, Zhenlu Wang and Zhaowei Wang    
In this study, laboratory experiments were conducted to investigate the influence of changes in storm wave height and water level on beach response in a medium-scale wave flume. A schematic storm was simulated (rising, apex, and waning phases). A non-int... ver más

 
Dongeun Kim and Yoon Hyeok Bae    
Generally, new and renewable energy systems generate electricity by installing and operating multiple modules simultaneously. In the Republic of Korea, recent studies and developments have focused on asymmetric wave energy converters (hereafter referred ... ver más