Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Computation  /  Vol: 12 Par: 3 (2024)  /  Artículo
ARTÍCULO
TITULO

A Deep Learning Approach for Brain Tumor Firmness Detection Based on Five Different YOLO Versions: YOLOv3?YOLOv7

Norah Fahd Alhussainan    
Belgacem Ben Youssef and Mohamed Maher Ben Ismail    

Resumen

Brain tumor diagnosis traditionally relies on the manual examination of magnetic resonance images (MRIs), a process that is prone to human error and is also time consuming. Recent advancements leverage machine learning models to categorize tumors, such as distinguishing between ?malignant? and ?benign? classes. This study focuses on the supervised machine learning task of classifying ?firm? and ?soft? meningiomas, critical for determining optimal brain tumor treatment. The research aims to enhance meningioma firmness detection using state-of-the-art deep learning architectures. The study employs a YOLO architecture adapted for meningioma classification (Firm vs. Soft). This YOLO-based model serves as a machine learning component within a proposed CAD system. To improve model generalization and combat overfitting, transfer learning and data augmentation techniques are explored. Intra-model analysis is conducted for each of the five YOLO versions, optimizing parameters such as the optimizer, batch size, and learning rate based on sensitivity and training time. YOLOv3, YOLOv4, and YOLOv7 demonstrate exceptional sensitivity, reaching 100%. Comparative analysis against state-of-the-art models highlights their superiority. YOLOv7, utilizing the SGD optimizer, a batch size of 64, and a learning rate of 0.01, achieves outstanding overall performance with metrics including mean average precision (99.96%), precision (98.50%), specificity (97.95%), balanced accuracy (98.97%), and F1-score (99.24%). This research showcases the effectiveness of YOLO architectures in meningioma firmness detection, with YOLOv7 emerging as the optimal model. The study?s findings underscore the significance of model selection and parameter optimization for achieving high sensitivity and robust overall performance in brain tumor classification.

 Artículos similares

       
 
Mondher Bouazizi, Chuheng Zheng, Siyuan Yang and Tomoaki Ohtsuki    
A growing focus among scientists has been on researching the techniques of automatic detection of dementia that can be applied to the speech samples of individuals with dementia. Leveraging the rapid advancements in Deep Learning (DL) and Natural Languag... ver más
Revista: Information

 
Nan Lao Ywet, Aye Aye Maw, Tuan Anh Nguyen and Jae-Woo Lee    
Urban Air Mobility (UAM) emerges as a transformative approach to address urban congestion and pollution, offering efficient and sustainable transportation for people and goods. Central to UAM is the Operational Digital Twin (ODT), which plays a crucial r... ver más
Revista: Aerospace

 
Nawaf Alharbi, Mustafa Youldash, Duha Alotaibi, Haya Aldossary, Reema Albrahim, Reham Alzahrani, Wahbia Ahmed Saleh, Sunday O. Olatunji and May Issa Aldossary    
Fetal hypoxia is a condition characterized by a lack of oxygen supply in a developing fetus in the womb. It can cause potential risks, leading to abnormalities, birth defects, and even mortality. Cardiotocograph (CTG) monitoring is among the techniques t... ver más
Revista: AI

 
Xie Lian, Xiaolong Hu, Liangsheng Shi, Jinhua Shao, Jiang Bian and Yuanlai Cui    
The parameters of the GR4J-CemaNeige coupling model (GR4neige) are typically treated as constants. However, the maximum capacity of the production store (parX1) exhibits time-varying characteristics due to climate variability and vegetation coverage chan... ver más
Revista: Water

 
Yongen Lin, Dagang Wang, Tao Jiang and Aiqing Kang    
Reliable streamflow forecasting is a determining factor for water resource planning and flood control. To better understand the strengths and weaknesses of newly proposed methods in streamflow forecasting and facilitate comparisons of different research ... ver más
Revista: Water