Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 23 (2023)  /  Artículo
ARTÍCULO
TITULO

Hydraulic Analysis of a Passive Wedge Wire Water Intake Screen for Ichthyofauna Protection

Michal Zielina    
Agata Pawlowska-Salach and Karol Kaczmarski    

Resumen

A passive wedge screen, thanks to its many functional and environmental advantages, has recently become a popular type of surface water intake for municipal and industrial purposes. The design solutions proposed in this paper for a passive wedge wire screen intake model and two different deflectors have been experimentally tested under conditions that can be considered as no-flow conditions at the hydraulic flume. There was only a slight flow associated with the operation of the screen, while there was almost no flow in the hydraulic channel itself, such that it would be considered a watercourse. A hydraulic analysis was carried out, including velocity distribution around the screen as well as the determination of head losses with or without deflectors installed inside the screen. Lower inlet and inflow velocities to the surface of the water intake reduce the risk of injury or death to small fish and fry as well as attracting pollutants understood as sediments, debris, and plant remains floating in the river. In order to achieve the lowest possible maximum inlet and inflow velocities at the highest possible intake capacity, it was necessary to equalize the approach velocity distributions. It was shown that by using the proposed deflectors, the approach velocity distributions were equalized and the maximum values of inflow and inlet velocities were reduced. A water intake screen with a deflector with an uneven porosity distribution equalized the approach velocities better than a deflector with equal openings, but the differences were small. Installing the wedge screen model reduced the maximum inlet velocity from exceeding 2 m/s to a value of 0.08 m/s, and after installing deflectors with equal and unequal openings to values of 0.06 m/s and 0.05 m/s, respectively. In addition to laboratory tests, the paper describes the numerical simulations performed in ANSYS Fluent software. The results of the simulations made it possible to obtain a broader study, as well as to compare the velocity values obtained at the measuring points during the laboratory tests.

 Artículos similares

       
 
Jifei Cui, Yanhao Jin, Yingjie Jing and Yu Lu    
An elastoplastic analysis scheme for the cylindrical cavity expansion in offshore islands unsaturated soils considering anisotropy is established. The hydraulic properties and anisotropy caused by stress of unsaturated soils are coupled in an elastoplast... ver más

 
Daniel Jancarczyk, Ireneusz Wróbel, Piotr Danielczyk and Marcin Sidzina    
Vibration monitoring is essential for maintaining the optimal performance and reliability of industrial machinery, which experiences dynamic forces and vibrations during operation. This study delved into a comprehensive analysis of vibration monitoring i... ver más
Revista: Applied Sciences

 
Z. Jason Hou, Nicholas D. Ward, Allison N. Myers-Pigg, Xinming Lin, Scott R. Waichler, Cora Wiese Moore, Matthew J. Norwood, Peter Regier and Steven B. Yabusaki    
The influence of coastal ecosystems on global greenhouse gas (GHG) budgets and their response to increasing inundation and salinization remains poorly constrained. In this study, we have integrated an uncertainty quantification (UQ) and ensemble machine ... ver más
Revista: Water

 
Joana Carneiro, Dália Loureiro, Marta Cabral and Dídia Covas    
This paper presents and demonstrates a novel scenario-building methodology that integrates contextual and future time uncertainty into the performance assessment of water distribution networks (WDNs). A three-step approach is proposed: (i) System context... ver más
Revista: Water

 
Alice Zaghini, Francesca Gagliardi, Valentina Marsili, Filippo Mazzoni, Lorenzo Tirello, Stefano Alvisi and Marco Franchini    
Providing water with adequate quality to users is one of the main concerns for water utilities. In most countries, this is ensured through the introduction of disinfectants, such as chlorine, which are subjected to decay over time, with consequent loss o... ver más
Revista: Water