Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Clean Technologies  /  Vol: 5 Par: 1 (2023)  /  Artículo
ARTÍCULO
TITULO

Arsenic Removal by Adsorbents from Water for Small Communities? Decentralized Systems: Performance, Characterization, and Effective Parameters

Roya Sadat Neisan    
Noori M. Cata Saady    
Carlos Bazan    
Sohrab Zendehboudi    
Abbas Al-nayili    
Bassim Abbassi and Pritha Chatterjee    

Resumen

Arsenic (As), a poisonous and carcinogenic heavy metal, affects human health and the environment. Numerous technologies can remove As from drinking water. Adsorption is the most appealing option for decentralized water treatment systems (DWTS) for small communities and household applications because it is reliable, affordable, and environmentally acceptable. Sustainable low-cost adsorbents make adsorption more appealing for DWTS to address some of the small communities? water-related issues. This review contains in-depth information on the classification and toxicity of As species and different treatment options, including ion exchange, membrane technologies, coagulation-flocculation, oxidation, and adsorption, and their effectiveness under various process parameters. Specifically, different kinetic and isotherm models were compared for As adsorption. The characterization techniques that determine various adsorbents? chemical and physical characteristics were investigated. This review discusses the parameters that impact adsorption, such as solution pH, temperature, initial As concentration, adsorbent dosage, and contact time. Finally, low-cost adsorbents application for the removal of As was discussed. Adsorption was found to be a suitable, cost-effective, and reliable technology for DWTS for small and isolated communities. New locally developed and low-cost adsorbents are promising and could support sustainable adsorption applications.

 Artículos similares

       
 
Md. Shafiquzzaman, Amimul Ahsan, Md. Mahmudul Hasan, Abdelkader T. Ahmed and Quazi Hamidul Bari    
Higher levels of arsenic (As) and iron (Fe) in groundwater have been reported globally. This study aims to enhance our understanding of the role of naturally occurring dissolved Fe(II) in removing As from groundwater. Field experiments were conducted usi... ver más
Revista: Water

 
Aisha Khan Khanzada, Muhammad Rizwan, Hussein E. Al-Hazmi, Joanna Majtacz, Tonni Agustiono Kurniawan and Jacek Makinia    
Arsenic (As) is a prominent carcinogen component produced via both geogenic and anthropogenic processes, posing serious risks to human health. This study aimed to investigate the potential of hydrochar prepared from red macroalgae for removing As from sy... ver más
Revista: Water

 
Sabrina Sorlini, Marco Carnevale Miino, Zdravka Lazarova and Maria Cristina Collivignarelli    
Many technologies for the treatment of arsenic-containing drinking water are available, but most of them are more effective on arsenic oxidized forms. Therefore, the pre-oxidation of As3+ is necessary. The electrochemical processes represent a very promi... ver más

 
Jesús Plácido Medina Salas, Francisco Gamarra Gómez, Elisban Juani Sacari Sacari, Wilson Orlando Lanchipa Ramos, Rocío María Tamayo Calderón, Efracio Mamani Flores, Víctor Yapuchura Platero, Walter Dimas Florez Ponce de León and Elmer Marcial Limache Sandoval    
Arsenic (III) exposure, often from contaminated water, can have severe health repercussions. Chronic exposure to this toxic compound is linked to increased risks of various health issues. Various technologies exist for arsenic (III) removal from contamin... ver más
Revista: Water

 
Kulyash Meiramkulova, Aliya Kydyrbekova, Davud Devrishov, Ubaidulayeva Nurbala, Akmaral Tuyakbayeva, Sayan Zhangazin, Rimma Ualiyeva, Valentina Kolpakova, Yuliya Yeremeyeva and Timoth Mkilima    
Zeolite materials are among the relatively cheap and readily available materials for wastewater treatment. However, the performance of zeolite-based systems can be highly affected by the material properties. In this study, the treatment system based on n... ver más
Revista: Water