Resumen
Atmospheric turbulence has an impact on the transmission of electromagnetic vortex waves with an orbital angular momentum (OAM) mode. In this paper, based on the joint atmospheric turbulence model, we examine the influence of atmospheric turbulence on the transmission of electromagnetic vortex waves. First, a mathematical model is established to formulate the transmission characteristics of electromagnetic vortex waves under joint atmospheric turbulence. Subsequently, in order to mitigate the influence of the atmospheric turbulence on the electromagnetic vortex waves, an adaptive compensation on phase is proposed. Finally, we analyzed the transmission performance of an OAM-mode multiplexing system using an adaptive compensation method through the wireless communication channel. By means of numerical simulation, the effect of atmospheric turbulence on the transmission characteristics and mode crosstalk of OAM is analyzed. The simulation results show that electromagnetic vortex waves could perform well on the wireless communication system with a low mode crosstalk, which provides the theoretical support to optimizing the mode division multiplexing technology in a free space communication system.