Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Applied Sciences  /  Vol: 11 Par: 11 (2021)  /  Artículo
ARTÍCULO
TITULO

Statistical Analysis of Tritium Breeding Ratio Deviations in the DEMO Due to Nuclear Data Uncertainties

Jin Hun Park    
Pavel Pereslavtsev    
Alexandre Konobeev and Christian Wegmann    

Resumen

For the stable and self-sufficient functioning of the DEMO fusion reactor, one of the most important parameters that must be demonstrated is the Tritium Breeding Ratio (TBR). The reliable assessment of the TBR with safety margins is a matter of fusion reactor viability. The uncertainty of the TBR in the neutronic simulations includes many different aspects such as the uncertainty due to the simplification of the geometry models used, the uncertainty of the reactor layout and the uncertainty introduced due to neutronic calculations. The last one can be reduced by applying high fidelity Monte Carlo simulations for TBR estimations. Nevertheless, these calculations have inherent statistical errors controlled by the number of neutron histories, straightforward for a quantity such as that of TBR underlying errors due to nuclear data uncertainties. In fact, every evaluated nuclear data file involved in the MCNP calculations can be replaced with the set of the random data files representing the particular deviation of the nuclear model parameters, each of them being correct and valid for applications. To account for the uncertainty of the nuclear model parameters introduced in the evaluated data file, a total Monte Carlo (TMC) method can be used to analyze the uncertainty of TBR owing to the nuclear data used for calculations. To this end, two 3D fully heterogeneous geometry models of the helium cooled pebble bed (HCPB) and water cooled lithium lead (WCLL) European DEMOs were utilized for the calculations of the TBR. The TMC calculations were performed, making use of the TENDL-2017 nuclear data library random files with high enough statistics providing a well-resolved Gaussian distribution of the TBR value. The assessment was done for the estimation of the TBR uncertainty due to the nuclear data for entire material compositions and for separate materials: structural, breeder and neutron multipliers. The overall TBR uncertainty for the nuclear data was estimated to be 3~4% for the HCPB and WCLL DEMOs, respectively.

Palabras claves

 Artículos similares

       
 
Qing-Gang Gao, Vonevilay Sombutmounvong, Lihua Xiong, Joo-Heon Lee and Jong-Suk Kim    
In this study, we investigated extreme droughts in the Indochina peninsula and their relationship with the Indian Ocean Dipole (IOD) mode. Areas most vulnerable to drought were analyzed via statistical simulations of the IOD based on historical observati... ver más
Revista: Water

 
Hugo López-Fernández     Pág. 22 - 25
Mass spectrometry using matrix assisted laser desorption ionization coupled to time of flight analyzers (MALDI-TOF MS) has become popular during the last decade due to its high speed, sensitivity and robustness for detecting proteins and peptides. This a... ver más

 
Jose M. Bernal-de-Lázaro     Pág. 74 - 81
This article summarizes the main contributions of the PhD thesis titled: "Application of learning techniques based on kernel methods for the fault diagnosis in Industrial processes". This thesis focuses on the analysis and design of fault diagnosis syste... ver más

 
Damny Magdaleno Guevara, Yadriel Miranda, Ivett Fuentes, María Garc ía     Pág. 69 - 80
A huge amount of information is represented in XML format. Several tools have been developed to store, and query XML data. It becomes inevitable to develop high performance techniques for efficiently analysing extremely large collections of XML data. O... ver más

 
Stefano Alderighi, Paolo Landa, Elena Tànfani and Angela Testi    
Molecular genetic techniques allow for the diagnosing of hereditary diseases and congenital abnormalities prenatally. A high variability of treatments exists, engendering an inappropriate clinical response, an inefficient use of resources, and the violat... ver más
Revista: Algorithms