Resumen
China is moving toward the important goal of being a green and low-carbon country, and the current severity level of population aging is of particular concern to the government. Aging, renewable energy consumption, and technological progress are closely linked. In this research, a panel vector autoregressive (PVAR) model is employed to investigate the long-run equilibrium relationship between population aging, renewable energy consumption and agricultural green total factor productivity using panel data for 30 Chinese provinces (cities) from 2000 to 2019. The findings reveal that, in the long run, both population aging and renewable energy use have considerable positive impacts on agricultural green total factor productivity. In addition, in order to more intuitively understand the impact of population aging and renewable energy consumption on agricultural green total factor productivity, the analysis adopts the impulse response function and variance decomposition. The contributions of population aging and renewable energy consumption to agricultural green total factor productivity are 2.23% and 0.56%, respectively, when the lag period is chosen to be 15, which implies that population aging and renewable energy use will continuously contribute to agricultural green total factor productivity. The study results have significant theoretical implications for understanding China?s aging population structure and current renewable energy use. Given the above results, this study puts forward countermeasures and suggestions from four aspects: improving agricultural infrastructure, increasing agricultural technology investment, increasing the stock of agricultural human capital and strengthening international cooperation.