Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Water  /  Vol: 10 Par: 10 (2018)  /  Artículo
ARTÍCULO
TITULO

Numerical Simulation of Hydraulic Characteristics in A Vortex Drop Shaft

Wenchuan Zhang    
Junxing Wang    
Chuangbing Zhou    
Zongshi Dong and Zhao Zhou    

Resumen

A new type of vortex drop shaft without ventilation holes is proposed to resolve the problems associated with insufficient aeration, negative pressure (Unless otherwise specified, the pressure in this text is gauge pressure and time-averaged pressure) on the shaft wall and cavitation erosion. The height of the intake tunnel is adjusted to facilitate aeration and convert the water in the intake tunnel to a non-pressurized flow. The hydraulic characteristics, including the velocity (Unless otherwise specified, the velocity in this text is time-averaged velocity), pressure and aeration concentration, are investigated through model experiment and numerical simulation. The results revealed that the RNG k-e turbulence model can effectively simulate the flow characteristics of the vortex drop shaft. By changing the inflow conditions, water flowed into the vertical shaft through the intake tunnel with a large amount of air to form a stable mixing cavity. Frictional shearing along the vertical shaft wall and the collisions of rotating water molecules caused the turbulence of the flow to increase; the aeration concentration was sufficient, and the energy dissipation effect was excellent. The cavitation number indicated that the possibility of cavitation erosion was small. The results of this study provide a reference for the analysis of similar spillways.

 Artículos similares

       
 
Yingke Liao, Guiping Zhu, Guang Wang, Jie Wang and Yanchao Ding    
Magnetohydrodynamic (MHD) is one of the most promising novel propulsion technologies with the advantages of no pollution, high specific impulse, and high acceleration efficiency. As the carrier of this technology, the MHD accelerator has enormous potenti... ver más
Revista: Aerospace

 
Roberto Scigliano, Valeria De Simone, Roberta Fusaro, Davide Ferretto and Nicole Viola    
The design of integrated and highly efficient solutions for thermal management is a key capability for different aerospace products, ranging from civil aircraft using hydrogen on board to miniaturized satellites. In particular, this paper discloses a nov... ver más
Revista: Aerospace

 
Chi Zhang, Yaguo Lyu, Le Jiang and Zhenxia Liu    
The numerical simulation method was used to investigate the deflection and deformation process of a circular lubricating oil jet in transverse shear airflow. The numerical model was compared and validated against the experimental data. The physical param... ver más
Revista: Aerospace

 
Bikram Kesharee Patra, Rocio L. Segura and Ashutosh Bagchi    
This study addresses the vital issue of the variability associated with modeling decisions in dam seismic analysis. Traditionally, structural modeling and simulations employ a progressive approach, where more complex models are gradually incorporated. Fo... ver más
Revista: Infrastructures

 
Kaipeng Zhu, Kai Li, Yadong Ji, Xiaolong Li, Xuan Liu, Kaide Liu and Xuandong Chen    
The microscopic pore structure of sandstone determines its macroscopic permeability. Based on computer tomography (CT) technology, CT scans were performed on three different types of sandstone pore structures, namely coarse sandstone, medium sandstone, a... ver más
Revista: Water