Resumen
The present study examines the photocatalytic properties of silver carbonate (Ag2CO3) for ethyl paraben (EP) degradation under simulated solar irradiation. Ag2CO3 was prepared according to a solution method and its physicochemical characteristics were studied by means of X-ray diffraction (XRD), the Brunauer?Emmett?Teller (BET) method, diffuse reflectance spectroscopy (DRS), and transmission electron microscopy (TEM). Complete EP (0.5 mg/L) removal was achieved after 120 min of irradiation with the use of 750 mg/L Ag2CO3 in ultrapure water (UPW), with EP degradation following pseudo-first-order kinetics. The effect of several experimental parameters was investigated; increasing catalyst concentration from 250 mg/L to 1000 mg/L led to an increase in EP removal, while increasing EP concentration from 0.25 mg/L to 1.00 mg/L slightly lowered kapp from 0.115 min-1 to 0.085 min-1. Experiments carried out with the use of UV or visible cut-off filters showed sufficient EP degradation under visible irradiation. A series of experiments were performed in real water matrices such as bottled water (BW) and wastewater (WW), manifesting Ag2CO3?s equally high photocatalytic activity for EP degradation. To interpret these results different concentrations of inorganic anions (bicarbonate 100?500 mg/L, chloride 100?500 mg/L) present in aqueous media, as well as 10 mg/L organic matter in the form of humic acid (HA), were added sequentially in UPW. Results showed accelerating effects on EP degradation for the lowest concentrations tested in all cases.