Redirigiendo al acceso original de articulo en 16 segundos...
ARTÍCULO
TITULO

Ocean Warming Amplifies the Effects of Ocean Acidification on Skeletal Mineralogy and Microstructure in the Asterinid Starfish Aquilonastra yairi

Munawar Khalil    
Steve S. Doo    
Marleen Stuhr and Hildegard Westphal    

Resumen

Ocean acidification and ocean warming compromise the capacity of calcifying marine organisms to generate and maintain their skeletons. While many marine calcifying organisms precipitate low-Mg calcite or aragonite, the skeleton of echinoderms consists of more soluble Mg-calcite. To assess the impact of exposure to elevated temperature and increased pCO2 on the skeleton of echinoderms, in particular the mineralogy and microstructure, the starfish Aquilonastra yairi (Echinodermata: Asteroidea) was exposed for 90 days to simulated ocean warming (27 °C and 32 °C) and ocean acidification (455 µatm, 1052 µatm, 2066 µatm) conditions. The results indicate that temperature is the major factor controlling the skeletal Mg (Mg/Ca ratio and Mgnorm ratio), but not for skeletal Sr (Sr/Ca ratio and Srnorm ratio) and skeletal Ca (Canorm ratio) in A. yairi. Nevertheless, inter-individual variability in skeletal Sr and Ca ratios increased with higher temperature. Elevated pCO2 did not induce any statistically significant element alterations of the skeleton in all treatments over the incubation time, but increased pCO2 concentrations might possess an indirect effect on skeletal mineral ratio alteration. The influence of increased pCO2 was more relevant than that of increased temperature on skeletal microstructures. pCO2 as a sole stressor caused alterations on stereom structure and degradation on the skeletal structure of A. yairi, whereas temperature did not; however, skeletons exposed to elevated pCO2 and high temperature show a strongly altered skeleton structure compared to ambient temperature. These results indicate that ocean warming might exacerbate the skeletal maintaining mechanisms of the starfish in a high pCO2 environment and could potentially modify the morphology and functions of the starfish skeleton.

 Artículos similares

       
 
Ahmad Dhuha Habibullah, Ayi Tarya, Nining Sari Ningsih and Mutiara Rachmat Putri    
Ocean temperatures increased during the 20th century and are predicted to continue to rise during the 21st century. Simultaneously, the extreme phenomena of shorter time ocean warming, known as Marine Heatwaves (MHWs), are also taking place. The present ... ver más

 
Donat-P. Häder and Kunshan Gao    
Aquatic ecosystems are responsible for about 50% of global productivity. They mitigate climate change by taking up a substantial fraction of anthropogenically emitted CO2 and sink part of it into the deep ocean. Productivity is controlled by a number of ... ver más
Revista: Water

 
Sheng Wu, Zhengyu Liu, Jinbo Du and Yonggang Liu    
The rise in atmospheric CO2 concentration is regarded as the dominant reason for observed warming since the mid-20th century. Based on the Paris Agreement target, this research designs three conceptual pathways to achieve the warming target of 1.5 °C abo... ver más

 
Louise P. Cameron, Claire E. Reymond, Jelle Bijma, Janina V. Büscher, Dirk De Beer, Maxence Guillermic, Robert A. Eagle, John Gunnell, Fiona Müller-Lundin, Gertraud M. Schmidt-Grieb, Isaac Westfield, Hildegard Westphal and Justin B. Ries    
Corals are globally important calcifiers that exhibit complex responses to anthropogenic warming and acidification. Although coral calcification is supported by high seawater pH, photosynthesis by the algal symbionts of zooxanthellate corals can be promo... ver más

 
Yannis S. Androulidakis and Yannis N. Krestenitis    
The sea surface temperature (SST) is an important factor and indicator of the sea water quality, with various ecological and anthropogenic implications. We used high-resolution satellite-derived SST data, in tandem with field observations and long-term m... ver más