Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 20 (2023)  /  Artículo
ARTÍCULO
TITULO

Impact of Traditional and Embedded Image Denoising on CNN-Based Deep Learning

Roopdeep Kaur    
Gour Karmakar and Muhammad Imran    

Resumen

In digital image processing, filtering noise is an important step for reconstructing a high-quality image for further processing such as object segmentation, object detection, and object recognition. Various image-denoising approaches, including median, Gaussian, and bilateral filters, are available in the literature. Since convolutional neural networks (CNN) are able to directly learn complex patterns and features from data, they have become a popular choice for image-denoising tasks. As a result of their ability to learn and adapt to various denoising scenarios, CNNs are powerful tools for image denoising. Some deep learning techniques such as CNN incorporate denoising strategies directly into the CNN model layers. A primary limitation of these methods is their necessity to resize images to a consistent size. This resizing can result in a loss of vital image details, which might compromise CNN?s effectiveness. Because of this issue, we utilize a traditional denoising method as a preliminary step for noise reduction before applying CNN. To our knowledge, a comparative performance study of CNN using traditional and embedded denoising against a baseline approach (without denoising) is yet to be performed. To analyze the impact of denoising on the CNN performance, in this paper, firstly, we filter the noise from the images using traditional means of denoising method before their use in the CNN model. Secondly, we embed a denoising layer in the CNN model. To validate the performance of image denoising, we performed extensive experiments for both traffic sign and object recognition datasets. To decide whether denoising will be adopted and to decide on the type of filter to be used, we also present an approach exploiting the peak-signal-to-noise-ratio (PSNRs) distribution of images. Both CNN accuracy and PSNRs distribution are used to evaluate the effectiveness of the denoising approaches. As expected, the results vary with the type of filter, impact, and dataset used in both traditional and embedded denoising approaches. However, traditional denoising shows better accuracy, while embedded denoising shows lower computational time for most of the cases. Overall, this comparative study gives insights into whether denoising will be adopted in various CNN-based image analyses, including autonomous driving, animal detection, and facial recognition.

 Artículos similares

       
 
Gleice Kelly Barbosa Souza, Samara Oliveira Silva Santos, André Luiz Carvalho Ottoni, Marcos Santos Oliveira, Daniela Carine Ramires Oliveira and Erivelton Geraldo Nepomuceno    
Reinforcement learning is an important technique in various fields, particularly in automated machine learning for reinforcement learning (AutoRL). The integration of transfer learning (TL) with AutoRL in combinatorial optimization is an area that requir... ver más
Revista: Algorithms

 
Shuling Zhao and Sishuo Zhao    
Due to the intensification of economic globalization and the impact of global warming, the development of methods to reduce shipping costs and reduce carbon emissions has become crucial. In this study, a multi-objective optimization algorithm was designe... ver más

 
Shitu Chen, Ling Feng, Xuteng Bao, Zhe Jiang, Bowen Xing and Jingxiang Xu    
Path planning is crucial for unmanned surface vehicles (USVs) to navigate and avoid obstacles efficiently. This study evaluates and contrasts various USV path-planning algorithms, focusing on their effectiveness in dynamic obstacle avoidance, resistance ... ver más

 
Liangtian Wang, Jie Zhou, Yuexin Chang and Hao Xu    
In recent years, electrochemical descaling technology has gained widespread attention due to its environmental friendliness and ease of operation. However, its single-pass removal efficiency could be higher, severely limiting its practical application. T... ver más
Revista: Water

 
Liu Yang, Gang Wang and Hongjun Wang    
Aligned with global Sustainable Development Goals (SDGs) and multidisciplinary approaches integrating AI with sustainability, this research introduces an innovative AI framework for analyzing Modern French Poetry. It applies feature extraction techniques... ver más
Revista: Information