Resumen
A prediction model of the sound velocity and sound attenuation of underwater cobalt-rich crusts (CRCs) was established to solve the problem that it is difficult to predict the sound velocity in thickness measurements of cobalt-rich crusts. Based on Biot theory and BISQ theory, a simplified Biot and BISQ model was proposed for the prediction of the sound velocity and sound attenuation of CRCs by using the Kozeny?Carman (KC) equation. The models could calculate the sound velocity and attenuation by the porosity and detection frequency. Based on the physical and mechanical properties of CRCs, a similarity model of the sound velocity and sound attenuation of CRCs was made by using the similarity theory to solve the problem that it is difficult to measure the acoustic propagation characteristics of CRCs. The sound velocity and sound attenuation of CRC similarity models with different porosities were measured by an underwater transmission experiment and the results of the simplified model calculation and experimental measurements were compared. The results showed that the simplified Biot model was suitable for the CRC sound velocity prediction and the simplified BISQ model was suitable for the CRC sound attenuation prediction, which had a high prediction accuracy.