Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Future Internet  /  Vol: 15 Par: 9 (2023)  /  Artículo
ARTÍCULO
TITULO

A Hybrid Neural Ordinary Differential Equation Based Digital Twin Modeling and Online Diagnosis for an Industrial Cooling Fan

Chao-Chung Peng and Yi-Ho Chen    

Resumen

Digital twins can reflect the dynamical behavior of the identified system, enabling self-diagnosis and prediction in the digital world to optimize the intelligent manufacturing process. One of the key benefits of digital twins is the ability to provide real-time data analysis during operation, which can monitor the condition of the system and prognose the failure. This allows manufacturers to resolve the problem before it happens. However, most digital twins are constructed using discrete-time models, which are not able to describe the dynamics of the system across different sampling frequencies. In addition, the high computational complexity due to significant memory storage and large model sizes makes digital twins challenging for online diagnosis. To overcome these issues, this paper proposes a novel structure for creating the digital twins of cooling fan systems by combining with neural ordinary differential equations and physical dynamical differential equations. Evaluated using the simulation data, the proposed structure not only shows accurate modeling results compared to other digital twins methods but also requires fewer parameters and smaller model sizes. The proposed approach has also been demonstrated using experimental data and is robust in terms of measurement noise, and it has proven to be an effective solution for online diagnosis in the intelligent manufacturing process.

 Artículos similares

       
 
Yan Chen and Chunchun Hu    
Accurate prediction of fine particulate matter (PM2.5) concentration is crucial for improving environmental conditions and effectively controlling air pollution. However, some existing studies could ignore the nonlinearity and spatial correlation of time... ver más

 
Fan Huang, Haiping Zhang, Qiaofeng Wu, Shanqing Chi and Mingqing Yang    
The proper dispatching of hydraulic structures in water diversion projects is a desirable way to maximize project benefits. This study aims to provide a reliable, optimal scheduling model for hydraulic engineering to improve the regional water environmen... ver más
Revista: Water

 
Ali Mirzazade, Cosmin Popescu and Björn Täljsten    
The aim of this study was to find strains in embedded reinforcement by monitoring surface deformations. Compared with analytical methods, application of the machine learning regression technique imparts a noteworthy reduction in modeling complexity cause... ver más
Revista: Infrastructures

 
Xianlei Fu, Maozhi Wu, Sasthikapreeya Ponnarasu and Limao Zhang    
This research introduces a hybrid deep learning approach to perform real-time forecasting of passenger traffic flow for the metro railway system (MRS). By integrating long short-term memory (LSTM) and the graph convolutional network (GCN), a hybrid deep ... ver más
Revista: Buildings

 
Ghizlane Hnini, Jamal Riffi, Mohamed Adnane Mahraz, Ali Yahyaouy and Hamid Tairi    
Spammers have created a new kind of electronic mail (e-mail) called image-based spam to bypass text-based spam filters. Unfortunately, these images contain harmful links that can infect the user?s computer system and take a long time to be deleted, which... ver más