Resumen
With urban development and renewal, underground space is becoming more utilized. The design and use of open underground public space entrances and exits have become more and more frequent. As a pedestrian passage connecting indoors and outdoors, the wind and thermal environment of open entrances have a great impact on human comfort. This paper investigates the open underground space entrances and exits in Xuzhou. Physical environments such as temperature and wind speed were measured. Through numerical simulation, the influence relationships between the spatial form elements of open entrances and exits and microclimate and thermal comfort were investigated. This study showed that there are four common spatial morphological elements of open entrances and exits. The physiologicafl equivalent temperature (PET) of the outdoor part of the entrance is the highest in summer, and the lowest in winter, and the PET is most affected by the shape of the opening plane and the aspect ratio, which are linearly related. The trends of the spatial morphology elements were not consistent when seeking the optimal situation of PET in summer and winter, respectively. The relationship between the spatial form elements of entrances and PET established in this study provides technical guidance for the design of open entrances, which can help improve environmental quality and enhance human comfort.