Redirigiendo al acceso original de articulo en 22 segundos...
ARTÍCULO
TITULO

An Improved VMD?EEMD?LSTM Time Series Hybrid Prediction Model for Sea Surface Height Derived from Satellite Altimetry Data

Hongkang Chen    
Tieding Lu    
Jiahui Huang    
Xiaoxing He and Xiwen Sun    

Resumen

Changes in sea level exhibit nonlinearity, nonstationarity, and multivariable characteristics, making traditional time series forecasting methods less effective in producing satisfactory results. To enhance the accuracy of sea level change predictions, this study introduced an improved variational mode decomposition and ensemble empirical mode decomposition?long short-term memory hybrid model (VMD?EEMD?LSTM). This model decomposes satellite altimetry data from near the Dutch coast using VMD, resulting in components of the intrinsic mode functions (IMFs) with various frequencies, along with a residual sequence. EEMD further dissects the residual sequence obtained from VMD into second-order components. These IMFs decomposed by VMD and EEMD are utilized as features in the LSTM model for making predictions, culminating in the final forecasted results. The experimental results, obtained through a comparative analysis of six sets of Dutch coastal sea surface height data, confirm the excellent accuracy of the hybrid model proposed (root mean square error (RMSE) = 47.2 mm, mean absolute error (MAE) = 33.3 mm, coefficient of determination (R2) = 0.9). Compared to the VMD-LSTM model, the average decrease in RMSE was 58.7%, the average reduction in MAE was 60.0%, and the average increase in R2 was 49.9%. In comparison to the EEMD-LSTM model, the average decrease in RMSE was 27.0%, the average decrease in MAE was 28.0%, and the average increase in R2 was 6.5%. The VMD?EEMD?LSTM model exhibited significantly improved predictive performance. The model proposed in this study demonstrates a notable enhancement in global mean sea lever (GMSL) forecasting accuracy during testing along the Dutch coast.

 Artículos similares

       
 
Yi?an Wang, Zhe Wu and Dong Ni    
Optimizing the heliostat field aiming strategy is crucial for maximizing thermal power production in solar power tower (SPT) plants while adhering to operational constraints. Although existing approaches can yield highly optimal solutions, their consider... ver más
Revista: Applied Sciences

 
Sharoon Saleem, Fawad Hussain and Naveed Khan Baloch    
Network on Chip (NoC) has emerged as a potential substitute for the communication model in modern computer systems with extensive integration. Among the numerous design challenges, application mapping on the NoC system poses one of the most complex and d... ver más
Revista: Algorithms

 
Lin Ma, Fuheng Ma, Wenhan Cao, Benxing Lou, Xiang Luo, Qiang Li and Xiaoniao Hao    
A original strategy for optimizing the inversion of concrete dam parameters based on the multi-strategy improved Sooty Tern Optimization algorithm (MSSTOA) is proposed to address the issues of low efficiency, low accuracy, and poor optimizing performance... ver más
Revista: Water

 
Jiaming Bian, Ye Liu and Jun Chen    
In recent times, remote sensing image super-resolution reconstruction technology based on deep learning has experienced rapid development. However, most algorithms in this domain concentrate solely on enhancing the super-resolution network?s performance ... ver más
Revista: Applied Sciences

 
Ziqi Liu, Shogo Okamoto, Tomohito Kuroda and Yasuhiro Akiyama    
Gait stability indices are crucial for identifying individuals at risk of falling while walking. The margin of stability is one such index, known for its good construct validity. Generally, the measurement of this stability index requires a motion captur... ver más
Revista: Applied Sciences