Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Buildings  /  Vol: 12 Par: 9 (2022)  /  Artículo
ARTÍCULO
TITULO

Study on Shear Mechanical Properties and Microscopic Failure Mechanism of Dentate Joints Based on DEM and Laboratory Tests

Jiaqi Guo    
Lipan Cheng    
Yongbiao Lai    
Yongchao Tian and Lu Li    

Resumen

The stability control of the surrounding rock is greatly influenced by the rock joint?s shear mechanical characteristics and deformation failure mechanism. A numerical model of the dentate joints was created using a particle flow discrete element method (DEM). To study the shear mechanical behavior and damage evolution characteristics of the joints, a numerical simulation of the joints shear test under the same normal stress was conducted. Additionally, the joints? shear failure mechanism and failure mode were investigated from a microscopic perspective in conjunction with laboratory tests. The results show that the shear strength steadily increases as the roughness of the rock joints increases and that it rapidly decreases after reaching its peak shear strength, indicating an obvious brittle failure. Varied rock joints exhibit significantly different micro-crack evolution, with rougher rock joints (r = 0.30, r = 0.37) exhibiting greater micro-crack production and crack extension into the model?s interior. Rock joint specimens with lower roughness (r = 0.17) had less concentration and fewer areas of contact force concentration. The shear failure mode of the rock joints gradually shifts from abrasion failure mode to snip failure mode as the roughness rises, which is largely compatible with the failure characteristics shown in the laboratory testing. The pattern of micro-crack development within the model specimen and the failure characteristics of the laboratory tests are in good agreement with the distribution characteristics of contact force on the rock joints.

 Artículos similares

       
 
Lei Zhang, Cuikun Wang, Caihua Chen and Mingzhe Cui    
Against the backdrop of China?s continuous promotion of green and low-carbon transformation and the development of construction industrialization, high-strength composite structural systems have significant development prospects. However, their research ... ver más
Revista: Buildings

 
Hao Wu, Zhezheng Wu, Weimin Song, Dongwei Chen, Mei Yang and Hang Yuan    
Due to the issue of weakened adhesion between ultra-thin surface overlays, higher demands have been placed on bonding layer materials in practical engineering. This study proposed a method for preparing a one-component waterborne epoxy resin-modified emu... ver más
Revista: Buildings

 
Zhongao Yang, Xiaohua Ding, Xin Liu, Abdoul Wahab, Zhongchen Ao, Ya Tian, Van Son Bang, Zhaoxi Long, Guodong Li and Penglin Ma    
The instability of geological slopes in mining environments poses a significant challenge to the safety and efficiency of operations. Waste Dump#2 at the Ziluoyi Iron Mine in China is a notable case study that highlights the challenges associated with si... ver más
Revista: Water

 
Ahmed Elgamal and Nissreen Elfaris    
The tunnel boring method (TBM) is a widely used and effective tunneling technology in various rock mass quality circumstances. A ?faulted rock mass? can range from a highly fractured rock mass to a sheared weak rock mass, making the ground conditions cha... ver más
Revista: Infrastructures

 
Abdul Basit, Safeer Abbas, Muhammad Mubashir Ajmal, Ubaid Ahmad Mughal, Syed Minhaj Saleem Kazmi and Muhammad Junaid Munir    
This study undertakes a comprehensive experimental and numerical analysis of the structural integrity of buried RC sewerage pipes, focusing on the performance of two distinct jointing materials: cement mortar and non-shrinkage grout. Through joint shear ... ver más
Revista: Infrastructures