Resumen
Ultra-reliable and low-latency communications (uRLLC) has received great attention in the study of wireless communication for it can provide high network performance in terms of reliability and latency. However, the reliability requirements of uRLLC require further investigation due to the inherent openness of the wireless channel. Different from the previous reliable contributions that focused on the retransmission mechanism, in this paper, we consider scenarios with the interference of multiple UAVs. We establish an analytical framework of the packet error rate (PER) for an air-to-ground (A2G) channel. In this framework, the cellular users are allocated to different UAVs according to their minimum path loss with the aim of minimizing the PER. Furthermore, a wireless link scheduling algorithm is proposed to enhance the reliability between the UAV and cellular user. Simulated results show that, under the same power and channel block length level, our proposed non-orthogonal multiple access (NOMA) scheduling scheme has the best performance.