Resumen
Thin-film nanocrystalline zinc oxide electrodes were fabricated by electrochemical deposition of ZnO on FTO-coated glass slides. ZnO electrodes were promoted by CdO coating on top of ZnO in amounts corresponding to 0.8, 0.1, and 0.05 C cm-2 in electric units. Modification of ZnO by a small amount of CdO, corresponding to 0.05 C cm-2, shifts the photoactivity of the composite photoanode into the visible part of the solar spectrum. It is shown that the ZnO/(0.05C)CdO/FTO electrode demonstrates high efficiency in photoelectrochemical degradation of methanol, ethylene glycol, and glycerol when irradiated by a simulated sunlight. According to intensity-modulated photocurrent spectroscopy (IMPS), the effect is due to suppression of the electron?hole pairs recombination and increase in the rate of photo-induced charge transfer. Therefore, thin-film photoanodes based on zinc oxide modified by CdO can be used for photoelectrochemical degradation of byproducts of biofuel production glycerol, and of other alcohols.