Resumen
The job shop scheduling problem with blocking constraints and total tardiness minimization represents a challenging combinatorial optimization problem of high relevance in production planning and logistics. Since general-purpose solution approaches struggle with finding even feasible solutions, a permutation-based heuristic method is proposed here, and the applicability of basic scheduling-tailored mechanisms is discussed. The problem is tackled by a local search framework, which relies on interchange- and shift-based operators. Redundancy and feasibility issues require advanced transformation and repairing schemes. An analysis of the embedded neighborhoods shows beneficial modes of implementation on the one hand and structural difficulties caused by the blocking constraints on the other hand. The applied simulated annealing algorithm generates good solutions for a wide set of benchmark instances. The computational results especially highlight the capability of the permutation-based method in constructing feasible schedules of valuable quality for instances of critical size and support future research on hybrid solution techniques.