Influence of Moisture Content on Some Mechanical Properties of Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Climatic Chamber
2.2. Determination of the Moisture Content
2.3. Direct Shear Assays
2.4. Oedometric Assays
3. Results
3.1. Moisture Content
3.2. Direct Shear Assays
3.2.1. Angle of Internal Friction and Apparent Cohesion
3.2.2. Dilatancy Angle
3.3. Oedometric Assays
4. Discussion
4.1. Moisture Content
4.2. Direct Shear Assays
4.2.1. Angle of Internal Friction and Apparent Cohesion
4.2.2. Dilatancy Angle
4.3. Oedometric Assays
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Janssen, H. Versuche Über Getreidebruck in Silozellen. Z. Vereines Dtsch. Ingenieure 1895, 39, 1045–1049. [Google Scholar]
- Jofriet, J.C.; Lelievre, B.; Fwa, T.F. Friction Model for Finite Element Analyses of Silos. Trans. Am. Soc. Agric. Eng. 1977, 20, 735–740. [Google Scholar] [CrossRef]
- Ayuga, F.; Guaita, M.; Aguado, P. Static and Dynamic Silo Loads Using Finite Element Models. J. Agric. Eng. Res. 2001, 78, 299–308. [Google Scholar] [CrossRef]
- Patwa, A.; Ambrose, R.P.K.; Casada, M.E. Discrete Element Method as an Approach to Model the Wheat Milling Process. Powder Technol. 2016, 302, 350–356. [Google Scholar] [CrossRef]
- Ai, J.; Chen, J.F.; Rotter, J.M.; Ooi, J.Y. Finite Element Prediction of Progressively Formed Conical Stockpiles. In Proceedings of the Simulia Customer Conference 2009, London, UK, 18–21 May 2009; pp. 1–13. [Google Scholar]
- Wang, Y.; Lu, Y.; Ooi, J.Y. A Numerical Study of Wall Pressure and Granular Flow in a Flat-Bottomed Silo. Powder Technol. 2015, 282, 43–54. [Google Scholar] [CrossRef]
- Rotter, J.M.; Holst, J.M.F.G.; Ooi, J.Y.; Sanad, A.M. Silo Pressure Predictions Using Discrete-Element and Finite-Element Analyses. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 1998, 356, 2685–2712. [Google Scholar] [CrossRef]
- Kobyłka, R.; Molenda, M.; Horabik, J. Loads on Grain Silo Insert Discs, Cones, and Cylinders: Experiment and DEM Analysis. Powder Technol. 2019, 343, 521–532. [Google Scholar] [CrossRef]
- Madrid, M.A.; Fuentes, J.M.; Ayuga, F.; Gallego, E. Determination of the Angle of Repose and Coefficient of Rolling Friction for Wood Pellets. Agronomy 2022, 12, 424. [Google Scholar] [CrossRef]
- González-Montellano, C.; Gallego, E.; Ramírez-Gómez, Á.; Ayuga, F. Three Dimensional Discrete Element Models for Simulating the Filling and Emptying of Silos: Analysis of Numerical Results. Comput. Chem. Eng. 2012, 40, 22–32. [Google Scholar] [CrossRef]
- Briassoulis, D. Finite Element Analysis of a Cylindrical Silo Shell under Unsymmetrical Pressure Distributions. Comput. Struct. 2000, 78, 271–281. [Google Scholar] [CrossRef]
- Horabik, J.; Parafiniuk, P.; Molenda, M. Stress Profile in Bulk of Seeds in a Shallow Model Silo as Influenced by Mobilisation of Particle-Particle and Particle-Wall Friction: Experiments and DEM Simulations. Powder Technol. 2018, 327, 320–334. [Google Scholar] [CrossRef]
- Molenda, M.; Horabik, J. Mechanical Properties of Granular Agro-Materials and Food Powders for Industrial Practice. Part I: Characterization of Mechanical Properties of Particulate Solids for Storage and Handling; Horabik, J., Laskowski, J., Eds.; Institute of Agrophysics Polish Academy of Science: Lublin, Poland, 2005. [Google Scholar]
- Lebègue, Y.; Boudakian, A. Bases Des Règles «Silos» Du SNBATI—Essais Sur Les Produits et Principes Des Formules «Silos». Ann. ITBTP 1989, 476, 69–113. [Google Scholar]
- Bucklin, R.A.; Molenda, M.; Bridges, T.C.; Ross, I.J. Slip-Stick Frictional Behavior of Wheat on Galvanized Steel. Trans. Am. Soc. Agric. Eng. 1996, 39, 649–653. [Google Scholar] [CrossRef]
- Bucklin, R.A.; Thompson, S.A.; Ross, I.J.; Biggs, R.H. Apparent Dynamic Coefficient of Friction of Corn on Galvanized Steel Bin Wall Material. Trans. Am. Soc. Agric. Eng. 1993, 36, 1915–1918. [Google Scholar] [CrossRef]
- Thompson, S.A.; Bucklin, R.A.; Batich, C.D.; Ross, I.J. Variation in the Apparent Coefficient of Friction of Wheat on Galvanized Steel. Trans. ASAE 1988, 31, 1518–1524. [Google Scholar] [CrossRef]
- Ramírez, A.; Moya, M.; Ayuga, F. Determination of the Mechanical Properties of Powdered Agricultural Products and Sugar. Part. Part. Syst. Charact. 2010, 26, 220–230. [Google Scholar] [CrossRef]
- Molenda, M.; Stasiak, M.; Moya, M.; Ramirez, A.; Horabik, J.; Ayuga, F. Testing Mechanical Properties of Food Powders in Two Laboratories-Degree of Consistency of Results. Int. Agrophys. 2006, 20, 37–45. [Google Scholar]
- Moya, M.; Aguado, P.J.; Ayuga, F. Mechanical Properties of Some Granular Agricultural Materials Used in Silo Design. Int. Agrophys. 2013, 27, 181–193. [Google Scholar] [CrossRef]
- Moya, M.; Ayuga, F.; Guaita, M.; Aguado, P.J. Mechanical Properties of Granular Agricultural Materials. Trans. ASAE 2002, 45, 1569–1577. [Google Scholar] [CrossRef]
- Moya, M.; Guaita, M.; Aguado, P.; Ayuga, F. Mechanical Properties of Granular Agricultural Materials, Part 2. Trans. ASABE 2006, 49, 479–489. [Google Scholar] [CrossRef]
- Moya, M.; Sánchez, D.; Villar-García, J.R. Values for the Mechanical Properties of Wheat, Maize and Wood Pellets for Use in Silo Load Calculations Involving Numerical Methods. Agronomy 2022, 12, 1261. [Google Scholar] [CrossRef]
- Wójcik, A.; Frączek, J. The Methodical Aspects of the Friction Modeling of Plant Granular Materials. Powder Technol. 2019, 344, 504–513. [Google Scholar] [CrossRef]
- Wójcik, A.; Frączek, J. The Problem of Standardising the Static Friction Force Measurement in Plant Granular Materials. Powder Technol. 2022, 398, 117133. [Google Scholar] [CrossRef]
- Wójcik, A.; Frączek, J.; Niemczewska-Wójcik, M. Methodological Problems of Friction Force Measurement of Plant Granular Materials. Tribol. Int. 2023, 188, 108886. [Google Scholar] [CrossRef]
- Kibar, H.; Öztürk, T.; Esen, B. The Effect of Moisture Content on Physical and Mechanical Properties of Rice (Oryza sativa L.). Span. J. Agric. Res. 2010, 8, 741–749. [Google Scholar] [CrossRef]
- Mattsson, J.E.; Kofman, P.D. Influence of Particle Size and Moisture Content on Tendency to Bridge in Biofuels Made from Willow Shoots. Biomass Bioenergy 2003, 24, 429–435. [Google Scholar] [CrossRef]
- Ponce-García, N.; Ramírez-Wong, B.; Torres-Chávez, P.I.; De Dios Figueroa-Cárdenas, J.; Serna-Saldívar, S.O.; Cortez-Rocha, M.O. Effect of Moisture Content on the Viscoelastic Properties of Individual Wheat Kernels Evaluated by the Uniaxial Compression Test under Small Strain. Cereal Chem. 2013, 90, 558–563. [Google Scholar] [CrossRef]
- Brar, H.S.; Sidhu, G.K.; Singh, A. Effect of Moisture Content on Engineering Properties of Oats (Avena sativa L.). Agric. Eng. Int. CIGR J. 2016, 18, 186–193. [Google Scholar]
- Zaalouk, A.K.; Zabady, F.I. Effect of Moisture Content on Angle of Repose and Friction Coefficient of Wheat Grain. Misr J. Agric. Eng. 2009, 26, 418–427. [Google Scholar] [CrossRef]
- Davies, R.M.; El-Okene, A.M. Moisture-Dependent Physical Properties of Soybeans. Int. Agrophys. 2009, 23, 299–303. [Google Scholar]
- Lancaster, J.K. A Review of the Influence of Environmental Humidity and Water on Friction, Lubrication and Wear. Tribol. Int. 1990, 23, 371–389. [Google Scholar] [CrossRef]
- Wiacek, J.; Molenda, M. Moisture-Dependent Physical Properties of Rapeseed-Experimental and DEM Modeling. Int. Agrophys. 2011, 25, 59–65. [Google Scholar]
- Wandkar, S.V.; Ukey, P.D.; Pawar, D.A. Determination of Physical Properties of Soybean at Different Moisture Levels. Agric. Eng. Int. CIGR J. 2012, 14, 138–142. [Google Scholar]
- Teunou, E.; Fitzpatrick, J.J. Effect of Relative Humidity and Temperature on Food Powder Flowability. J. Food Eng. 1999, 42, 109–116. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, Q.; Shi, C.; Yan, X. Model for the Prediction of Grain Density and Pressure Distribution in Hopper-Bottom Silos. Biosyst. Eng. 2017, 163, 159–166. [Google Scholar] [CrossRef]
- Gorji, A.; Rajabipour, A.; Tavakoli, H. Fracture Resistance of Wheat Grain as a Function of Moisture Content, Loading Rate and Grain Orientation. Aust. J. Crop Sci. 2010, 4, 448–452. [Google Scholar]
- Landi, G.; Barletta, D.; Poletto, M. Modelling and Experiments on the Effect of Air Humidity on the Flow Properties of Glass Powders. Powder Technol. 2011, 207, 437–443. [Google Scholar] [CrossRef]
- Louati, H.; Oulahna, D.; de Ryck, A. Effect of the Particle Size and the Liquid Content on the Shear Behaviour of Wet Granular Material. Powder Technol. 2017, 315, 398–409. [Google Scholar] [CrossRef]
- Frye, K.M.; Marone, C. Effect of Humidity on Granular Friction at Room Temperature. J. Geophys. Res. Solid. Earth 2002, 107, ETG 11-1–ETG 11-13. [Google Scholar] [CrossRef]
- Nokhodchi, A. An Overview of the Effect of Moisture on Compaction and Compression. Pharm. Technol. 2005, 29, 46–66. [Google Scholar]
- Delenne, J.Y.; Soulié, F.; El Youssoufi, M.S.; Radjai, F. From Liquid to Solid Bonding in Cohesive Granular Media. Mech. Mater. 2011, 43, 529–537. [Google Scholar] [CrossRef]
- Delenne, J.; El Youssoufi, M.; Cherblanc, F.; Bénet, J. Mechanical Behavior and Failure of Cohesive Granular Materials. Int. J. Numer. Anal. Methods Geomech. 2004, 28, 1577–1594. [Google Scholar] [CrossRef]
- Jiang, M.J.; Yu, H.S.; Harris, D. Bond Rolling Resistance and Its Effect on Yielding of Bonded Granulates by DEM Analyses. Int. J. Numer. Anal. Methods Geomech. 2006, 30, 723–761. [Google Scholar] [CrossRef]
- Louati, H.; Oulahna, D.; de Ryck, A. Apparent Friction and Cohesion of a Partially Wet Granular Material in Steady-State Shear. Powder Technol. 2015, 278, 65–71. [Google Scholar] [CrossRef]
- Richefeu, V.; El Youssoufi, M.S.; Radjaï, F. Shear Strength of Unsaturated Soils: Experiments, DEM Simulations, and Micromechanical Analysis. In Theoretical and Numerical Unsaturated Soil Mechanics; Springer: Berlin/Heidelberg, Germany, 2007; pp. 83–91. [Google Scholar]
- Richefeu, V.; El Youssoufi, M.S.; Radjaï, F. Shear Strength Properties of Wet Granular Materials. Phys. Rev. E Stat. Nonlin Soft Matter Phys. 2006, 73, 051304. [Google Scholar] [CrossRef]
- UNE-EN ISO 17892-1; Geotechnical Investigation and Testing. Laboratory Testing of Soil. Part 1: Determination of Water Content. AENOR: Madrid, Spain, 2015.
- UNE-EN ISO 17892-10; Geotechnical Investigation and Testing. Laboratory Testing of Soil. Part 10: Direct Shear Tests. AENOR: Madrid, Spain, 2018.
- UNE-EN ISO 17892-5; Geotechnical Investigation and Testing. Laboratory Testing of Soil. Part 5: Incremental Loading Oedometer Test. AENOR: Madrid, Spain, 2017.
- Tabatabaeefar, A. Moisture-Dependent Physical Properties of Wheat. Int. Agrophys. 2003, 17, 207–211. [Google Scholar]
- Gao, M.; Cheng, X.; Du, X. Simulation of Bulk Density Distribution of Wheat in Silos by Finite Element Analysis. J. Stored Prod. Res. 2018, 77, 1–8. [Google Scholar] [CrossRef]
- Moysey, E.; Lambert, E.; Wang, Z. Flow Rates of Grains and Oilseeds through Sharp-Edged Orifices. Trans. Am. Soc. Agric. Eng. 1988, 31, 226–231. [Google Scholar] [CrossRef]
- Zeng, C.; Wang, Y. The Shear Strength and Dilatancy Behavior of Wheat Stored in Silos. Complexity 2019, 2019, 1547616. [Google Scholar] [CrossRef]
- Zeng, C.; Gu, H.; Wang, Y. Stress-Strain Response of Sheared Wheat Granular Material Stored in Silos Using Triaxial Compression Tests. Int. Agrophys. 2020, 34, 103–114. [Google Scholar] [CrossRef]
- Zhang, Q.; Britton, M.G. A Micromechanics Model for Predicting Dynamic Loads during Discharge in Bulk Solids Storage Structures. Can. Biosyst. Eng./Le Genie Des Biosyst. Au Can. 2003, 45, 5.21–5.27. [Google Scholar]
- Zhang, Q.; Li, Y.; Puri, V.M.; Manbeck, H.B. Physical Properties Effect on Stress-Strain Behavior of Wheat En Masse-Part II. Constitutive Elastoplastic Parameter Dependence on Initial Bulk Density and Moisture Content. Trans. Am. Soc. Agric. Eng. 1989, 32, 203–209. [Google Scholar] [CrossRef]
- Reimbert, M.; Reimbert, A. Silos. Theory and Practice; Lavoisier: Paris, France, 1987; ISBN 9782852063655. [Google Scholar]
- Zeng, C.; Wang, Y. Compressive Behaviour of Wheat from Confined Uniaxial Compression Tests. Int. Agrophys. 2019, 33, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.N.; Muir, W.E. Grain Storage: Part of a System; Sinha, R.N., Muir, W.E., Eds.; Avi Publishing Company: Madison, WI, USA, 1973. [Google Scholar]
- Carman, K. Some Physical Properties of Lentil Seeds. J. Agric. Engng Res. 1996, 63, 87–92. [Google Scholar] [CrossRef]
- Dutta, S.K.; Nema, V.K.; Bhardwaj, R.K. Physical Properties of Gram. J. Agric. Eng. Res. 1988, 39, 259–268. [Google Scholar] [CrossRef]
- Shepherd, H.; Bhardwaj, R.K. Moisture-Dependent Physical Properties of Pigeon Pea. J. Agric. Eng. Res. 1986, 35, 227–234. [Google Scholar] [CrossRef]
- Turner, A.P.; Montross, M.D.; McNeill, S.G.; Sama, M.P.; Casada, M.C.; Boac, J.M.; Bhadra, R.E.; Maghirang, R.G.; Thompson, S.A. Modeling the Compressibility Behavior of Hard Red Wheat Varieties. Trans. ASABE 2016, 59, 1029–1038. [Google Scholar]
- Thompson, S.A.; Ross, I.J. Compressibility and Frictional Coefficients of Wheat. Trans. ASAE 1983, 26, 1171–1176. [Google Scholar] [CrossRef]
- Ganesan, V.; Rosentrater, K.A.; Muthukumarappan, K. Flowability and Handling Characteristics of Bulk Solids and Powders—A Review with Implications for DDGS. Biosyst. Eng. 2008, 101, 425–435. [Google Scholar] [CrossRef]
- Zhang, S.; Lin, P.; Wang, C.L.; Tian, Y.; Wan, J.F.; Yang, L. Investigating the Influence of Wall Frictions on Hopper Flows. Granul. Matter 2014, 16, 857–866. [Google Scholar] [CrossRef]
- Lanzerstorfer, C.; Hinterberger, M. Influence of the Moisture Content on the Flowability of Fine-Grained Iron Ore Concentrate. Int. J. Chem. Mol. Eng. 2017, 11, 265–268. [Google Scholar]
- Capece, M.; Silva, K.R.; Sunkara, D.; Strong, J.; Gao, P. On the Relationship of Inter-Particle Cohesiveness and Bulk Powder Behavior: Flowability of Pharmaceutical Powders. Int. J. Pharm. 2016, 511, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Bian, Q.; Sittipod, S.; Garg, A.; Ambrose, R.P.K. Bulk Flow Properties of Hard and Soft Wheat Flours. J. Cereal Sci. 2015, 63, 88–94. [Google Scholar] [CrossRef]
- Mellmann, J.; Hoffmann, T.; Fürll, C. Mass Flow during Unloading of Agricultural Bulk Materials from Silos Depending on Particle Form, Flow Properties and Geometry of the Discharge Opening. Powder Technol. 2014, 253, 46–52. [Google Scholar] [CrossRef]
- Tomasetta, I.; Barletta, D.; Poletto, M. Correlation of Powder Flow Properties to Interparticle Interactions at Ambient and High Temperatures. Particuology 2014, 12, 90–99. [Google Scholar] [CrossRef]
- Littlefield, B.; Fasina, O.O.; Shaw, J.; Adhikari, S.; Via, B. Physical and Flow Properties of Pecan Shells-Particle Size and Moisture Effects. Powder Technol. 2011, 212, 173–180. [Google Scholar] [CrossRef]
- González-Montellano, C.; Ayuga, F.; Ooi, J.Y. Discrete Element Modelling of Grain Flow in a Planar Silo: Influence of Simulation Parameters. Granul. Matter 2011, 13, 149–158. [Google Scholar] [CrossRef]
- Couto, A.; Ruiz, A.; Aguado, P.J. Experimental Study of the Pressures Exerted by Wheat Stored in Slender Cylindrical Silos, Varying the Flow Rate of Material during Discharge. Comparison with Eurocode 1 Part 4. Powder Technol. 2013, 237, 450–467. [Google Scholar] [CrossRef]
Climatic Chamber Conditions | Moisture Content (d.b.) (%) | |
---|---|---|
Temperature (°C) | Relative Humidity (%) | |
55 | 25 | 7.5 |
20 | 35 | 10 |
20 | 45 | 10.5 |
20 | 65 | 13.4 |
20 | 90 | 15.5 |
Moisture Content (%) (d.b.) | Angle of Internal Friction (ϕ) | Apparent Cohesion (C, kPa) |
---|---|---|
7.5 | 22.9° ± 0.6 | 10.98 ± 1.82 |
10.0 | 24.9° ± 0.5 | 10.37 ± 1.59 |
10.5 | 24.6° ± 0.6 | 12.50 ± 1.88 |
13.4 | 24.8° ± 0.3 | 9.62 ± 1.01 |
15.5 | 28.6° ± 0.5 | 6.47 ± 1.88 |
Moisture Content (%) (d.b.) | Angle of Internal Friction (ϕ) | Apparent Cohesion (C, kPa) | ||
---|---|---|---|---|
Low Normal Stresses | High Normal Stresses | Low Normal Stresses | High Normal Stresses | |
7.5 | 28.2° ± 2.2 | 21.2° ± 1.1 | 6.81 ± 1.56 | 18.98 ± 4.88 |
10.0 | 29.0° ± 0.7 | 23.1° ± 0.8 | 6.66 ± 0.53 | 19.11 ± 3.76 |
10.5 | 22.9° ± 4.0 | 23.9° ± 1.4 | 12.83 ± 2.61 | 15.88 ± 6.26 |
13.4 | 29.0° ± 0.4 | 23.7° ± 0.4 | 6.37 ± 0.26 | 15.18 ± 1.81 |
15.5 | 29.2° ± 1.7 | 29.3° ± 1.4 | 6.71 ± 1.20 | 2.74 ± 7.06 |
Normal Stress (kPa) | Dilatancy Angle (Ψ) | ||||
---|---|---|---|---|---|
Moisture Content (d.b.) | |||||
7.5% | 10.0% | 10.5% | 13.4% | 15.5% | |
10 | 14.2° ± 1.4 | 17.0° ± 2.2 | 14.8° ± 2.0 | 15.3° ± 1.2 | 12.4° ± 2.6 |
20 | 11.6° ± 1.1 | 15.9° ± 3.8 | 13.4° ± 1.6 | 13.2° ± 1.0 | 8.5° ± 0.1 |
50 | 6.5° ± 2.2 | 8.0° ± 5.7 | 7.3° ± 0.1 | 8.2° ± 5.4 | 8.5° ± 2.3 |
100 | 3.6° ± 2.1 | 5.5° ± 4.0 | 5.9° ± 0.2 | 3.6° ± 5.0 | 7.4° ± 0.6 |
200 | 7.0° ± 2.0 | 2.1° ± 2.9 | 0.1° ± 0.0 | 8.3°± 2.1 | 3.9°± 2.6 |
300 | 2.8° ± 0.8 | 4.7° ± 1.4 | 1.2° ± 1.5 | 0.8° ± 0.9 | 0.8° ± 1.0 |
Normal Stress (kPa) | Apparent Specific Weight (γ) (kN/m3) | ||||
---|---|---|---|---|---|
Moisture Content | |||||
7.5% | 10.0% | 10.5% | 13.4% | 15.5% | |
0 | 7.36 ± 0.00 | 7.37 ± 0.00 | 7.35 ± 0.00 | 7.35 ± 0.00 | 7.36 ± 0.00 |
8 | 7.38 ± 0.00 | 7.41 ± 0.02 | 7.42 ± 0.02 | 7.50 ± 0.01 | 7.41 ± 0.01 |
16 | 7.39 ± 0.01 | 7.45 ± 0.02 | 7.46 ± 0.02 | 7.59 ± 0.02 | 7.46 ± 0.01 |
32 | 7.43 ± 0.01 | 7.51 ± 0.03 | 7.52 ± 0.02 | 7.70 ± 0.02 | 7.53 ± 0.00 |
64 | 7.47 ± 0.01 | 7.58 ± 0.04 | 7.58 ± 0.02 | 7.78 ± 0.02 | 7.62 ± 0.02 |
128 | 7.53 ± 0.02 | 7.66 ± 0.04 | 7.65 ± 0.02 | 7.88 ± 0.02 | 7.73 ± 0.05 |
256 | 7.61 ± 0.04 | 7.75 ± 0.06 | 7.75 ± 0.02 | 8.02 ± 0.04 | 7.81 ± 0.06 |
128 | 7.59 ± 0.03 | 7.75 ± 0.06 | 7.73 ± 0.02 | 8.01 ± 0.03 | 7.81 ± 0.06 |
64 | 7.58 ± 0.03 | 7.74 ± 0.06 | 7.72 ± 0.02 | 8.00 ± 0.02 | 7.81 ± 0.06 |
32 | 7.55 ± 0.01 | 7.72 ± 0.07 | 7.70 ± 0.02 | 7.99 ± 0.02 | 7.81 ± 0.06 |
16 | 7.55 ± 0.02 | 7.71 ± 0.07 | 7.69 ± 0.01 | 7.98 ± 0.01 | 7.80 ± 0.07 |
8 | 7.55 ± 0.02 | 7.70 ± 0.07 | 7.68 ± 0.01 | 7.98 ± 0.01 | 7.80 ± 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moya, M.; Sánchez, D.; Romero, J.Á.; Villar-García, J.R. Influence of Moisture Content on Some Mechanical Properties of Wheat. Agronomy 2024, 14, 347. https://doi.org/10.3390/agronomy14020347
Moya M, Sánchez D, Romero JÁ, Villar-García JR. Influence of Moisture Content on Some Mechanical Properties of Wheat. Agronomy. 2024; 14(2):347. https://doi.org/10.3390/agronomy14020347
Chicago/Turabian StyleMoya, Manuel, David Sánchez, José Ángel Romero, and José Ramón Villar-García. 2024. "Influence of Moisture Content on Some Mechanical Properties of Wheat" Agronomy 14, no. 2: 347. https://doi.org/10.3390/agronomy14020347
APA StyleMoya, M., Sánchez, D., Romero, J. Á., & Villar-García, J. R. (2024). Influence of Moisture Content on Some Mechanical Properties of Wheat. Agronomy, 14(2), 347. https://doi.org/10.3390/agronomy14020347