Redirigiendo al acceso original de articulo en 24 segundos...
ARTÍCULO
TITULO

Dynamics of the Land?Sea Breeze System and the Surface Current Response in South-West Australia

Syeda Rafiq    
Charitha Pattiaratchi and Ivica Janekovic    

Resumen

The land?sea breeze (LSB) system, driven by the thermal contrast between the land and the adjacent ocean is a widely known atmospheric phenomenon, which occurs in coastal regions globally. South-west Australia experiences a persistent and one of the strongest LSB systems globally with maximum wind speeds associated with the LSB system often exceeding 15 ms-1. In this paper, using field measurements and numerical simulations, we examine: (1) the local winds associated with the land?sea breeze with an emphasis on the ocean; and, (2) the response of the surface currents to the diurnal wind forcing. The measurements indicated that the wind speeds decreased between midnight and 0400 and increased rapidly after 1100, reaching maxima >10 ms-1 around 1800) associated with the sea breeze and decreased to midnight. Wind directions were such that they were blowing from south-east (120°) in the morning and changed to almost southerly (~200°) in the afternoon. Decomposition of the wind record to the diurnal and synoptic components indicated that the diurnal component of winds (i.e., LSB) was oriented along the south-west to north-east axis. However, the stronger synoptic winds were from the south-east to south quadrant and in combination with the LSB, the winds consisted of a strong southerly component. We examined the evolution, horizontal extent, and propagation properties of sea breeze fronts for characteristic LSB cycles and the sea breeze cell propagating offshore and inland. The results indicated that the sea breeze cell was initiated in the morning in a small area, close to 33° S, 115.5° E, with a width of ~25 km and expanded onshore, offshore and alongshore. The sea breeze cell expanded faster (30 kmh-1) and farther (120 km) in the offshore direction than in the onshore direction (10 kmh-1 and 30?40 km). Winds during the LSB cycle followed a counterclockwise rotation that was also reflected in the surface currents. The winds and surface currents rotated anticlockwise with the surface currents responding almost instantaneously to changes in wind forcing but were modified by topography. The diurnal surface currents were enhanced due to the resonance between the LSB forcing and the inertial response.

 Artículos similares