Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Applied Sciences  /  Vol: 11 Par: 23 (2021)  /  Artículo
ARTÍCULO
TITULO

Experimental Investigation on Thermal Comfort of COVID-19 Nucleic Acid Sampling Staff in Hot and Humid Environment: A Pilot Study of University Students

Yingying Zhao    
Jiying Liu    
Moon Keun Kim    
Shiyu Zhou and Yanqiu Du    

Resumen

The current situation of Coronavirus Disease 2019 (COVID-19) prevention and control coupled with the need to work in high-temperature harsh environments makes it necessary to ensure the health and efficiency of medical staff. An experimental outdoor work tent was set up and university students were used to study the thermal comfort of personnel wearing protective clothing in hot and humid environments. The experiment was carried out simultaneously through subjective and objective field tests and physiological tests of personnel. The wet bulb globe temperature (WBGT) index was investigated to divide the outdoor thermal environment into four working conditions: 21?23 °C, 23?25 °C, 25?27 °C and 27?29 °C. Under the different thermal environment intensities, the variations of physiological parameters of test personnel were monitored. The results showed that when WBGT was increased to 27?29 °C, 100% of the participants expected the external temperature to become cooler and the humidity to decrease after one hour. When the temperature was close to 30 °C and the relative humidity was close to 60%, it was necessary to take cooling measures to reduce the thermal stress of the participants. Moreover, relationships between subjective feelings and physiological parameters of the nucleic acid sampling personnel were obtained. Results also found that the forehead, chest and back were the highest skin temperature parts, so it is most effective to give priority to improving the thermal comfort of these three locations. As an early attempt to conduct the real outdoor experimental study on the thermal comfort of COVID-19 nucleic acid sampling staff, this study provided a theoretical basis for follow-up research to develop cooling strategies for protective clothing in hot and humid outdoor environments.

 Artículos similares

       
 
Yusong Wang, Chengxiang Zhu, Ke Xiong and Chunling Zhu    
Ice accumulation on airfoils and engines seriously endangers fight safety. The design of anti-icing/de-icing systems calls for an accurate measurement of the adhesion strength between ice and substrates. In this research, a test bench for adhesion streng... ver más
Revista: Aerospace

 
Xianqing Liu, Yu Ding, Wenlong Li, Puyang Zhang, Kui Yu, Yutao Feng, Nan Lv and Sheng Luo    
In recent years, multi-bucket foundations have been studied and gradually adopted in engineering practices as a novel foundation for offshore wind turbines within a range of water depth of 30 to 50 m. This study investigated the motion characteristics of... ver más

 
Mengxiang Li, Guo Wang, Kun Liu, Yue Lu and Jiaxia Wang    
The safety assessment of ship cargo securing systems is of significant importance in preventing casualties, vessel instability, and economic losses resulting from the failure of securing systems during transportation in adverse sea conditions. In this st... ver más

 
Sonja Kostic, Vladimir Kocovic, Suzana Petrovic Savic, Dragomir Miljanic, Jasmina Miljojkovic, Milan Djordjevic and Djordje Vukelic    
Polypropylene is a widely used linear hydrocarbon polymer with diverse applications due to its exceptional physicochemical characteristics and minimal changes during the recycling process. Numerous studies have focused on factors influencing the mechanic... ver más
Revista: Applied Sciences

 
Seyed Mohammad Hashemi, Ruxandra Mihaela Botez and Georges Ghazi    
Accurate aircraft trajectory prediction is fundamental for enhancing air traffic control systems, ensuring a safe and efficient aviation transportation environment. This research presents a detailed study on the efficacy of the Random Forest (RF) methodo... ver más
Revista: Aerospace