Resumen
Environmental conditions are the primary factor determining the growth and yield of plants. As a result of climate change, the negative impact of abiotic factors is intensifying. One of them is salt stress. Soil salinity is one of the major problems in agriculture in the world and affects many cultivar species. The aim of this study was to evaluate the effect of silicon foliar application on the physiological and epigenetic reaction of oats (Avena sativa L.) under salt stress. The pot experiment was carried out in controlled conditions. Oat plants were subject to sodium chloride (NaCl) at a concentration of 200 mM and applied to the soil. Three concentrations of Optysil (200 g·L-1 SiO2) were used for foliar fertilization. Measurements were made of the relative chlorophyll content in the leaves, the selected chlorophyll fluorescence parameters, and the gas exchange parameters. In this study, methylation-sensitive amplification polymorphisms (MSAP) analysis was used to investigate the effect of Si application during salinity stress on the DNA methylation level in oat plants. The results of this study indicated that the exogenous application of silicon improved the tolerance of the oat plants to salinity. The doses of 0.1% and 0.2% Optysil had the greatest effect on alleviating the impact of salt stress on the oat plants. In this research, the epigenetic as well as the physiological response of plants to the applied experimental factors were analyzed, which is a broad coverage of the research topic on the effects of salinity and silicon on plants.