Redirigiendo al acceso original de articulo en 15 segundos...
ARTÍCULO
TITULO

Research on Multi-Ship Target Detection and Tracking Method Based on Camera in Complex Scenes

Xiaobin Hong    
Bin Cui    
Weiguo Chen    
Yinhui Rao and Yuanming Chen    

Resumen

Aiming at the problem that multi-ship target detection and tracking based on cameras is difficult to meet the accuracy and speed requirements at the same time in some complex scenes, an improved YOLOv4 algorithm is proposed, which simplified the network of the feature extraction layer to obtain more shallow feature information and avoid the disappearance of small ship target features, and uses the residual network to replace the continuous convolution operation to solve the problems of network degradation and gradient disappearance. In addition, a nonlinear target tracking model based on the UKF method is constructed to solve the problem of low real-time performance and low precision in multi-ship target tracking. Multi-ship target detection and tracking experiments were carried out in many scenes with large differences in ship sizes, strong background interference, tilted images, backlight, insufficient illumination, and rain. Experimental results show that the average precision of the detection algorithm of this paper is 0.945, and the processing speed is about 34.5 frame per second, where the real-time performance is much better than other algorithms while maintaining high precision. Furthermore, the multiple object tracking accuracy (MOTA) and the multiple object tracking precision (MOTP) of this paper algorithm are 76.4 and 80.6, respectively, which are both better than other algorithms. The method proposed in this paper can realize the ship target detection and tracking well, with less missing detection and false detection, and also has good accuracy and real-time performance. The experimental results provide a valuable theoretical reference for the further practical application of the method.

 Artículos similares

       
 
Wei Huang, Kaitao Meng, Wenzhou Sun, Jianxu Shu, Tianhe Xu and Hao Zhang    
Underwater localization is one of the key techniques for positioning, navigation, timing (PNT) services that could be widely applied in disaster warning, underwater rescues and resource exploration. One of the reasons why it is difficult to achieve accur... ver más

 
Sheng Liu, Jian Song, Lanyong Zhang and Yinchao Tan    
The three-degree-of-freedom (3-DOF) stabilized control system for ship propulsion-assisted sails is used to control the 3-DOF motion of sails to obtain offshore wind energy. The attitude of the sail is adjusted to ensure optimal thrust along the target c... ver más

 
Andrea Settimi, Naravich Chutisilp, Florian Aymanns, Julien Gamerro and Yves Weinand    
We present TimberTool (TTool v2.1.1), a software designed for woodworking tasks assisted by augmented reality (AR), emphasizing its essential function of the real-time localization of a tool head?s poses within camera frames. The localization process, a ... ver más
Revista: Applied Sciences

 
Shu-Hung Lee, Chia-Hsin Cheng, Chien-Chih Lin and Yung-Fa Huang    
In wireless sensor networks (WSNs), the target positioning and tracking are very important topics. There are many different methods used in target positioning and tracking, for example, angle of arrival (AOA), time of arrival (TOA), time difference of ar... ver más
Revista: Information

 
Alvaro Arroyo Cebeira and Mariano Asensio Vicente    
In this paper, we propose a nonlinear tracking solution for maneuvering aerial targets based on an adaptive interacting multiple model (IMM) framework and unscented Kalman filters (UKFs), termed as AIMM-UKF. The purpose is to obtain more accurate estimat... ver más
Revista: Aerospace