Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Water  /  Vol: 10 Par: 9 (2018)  /  Artículo
ARTÍCULO
TITULO

Experimental Study on the Impact Characteristics of Cavitation Bubble Collapse on a Wall

Jing Luo    
Weilin Xu    
Jun Deng    
Yanwei Zhai and Qi Zhang    

Resumen

As a hydrodynamic phenomenon, cavitation is a main concern in many industries such as water conservancy, the chemical industry and medical care. There are many studies on the generation, development and collapse of cavitation bubbles, but there are few studies on the variation of the cyclic impact strength on walls from the collapse of cavitation bubbles. In this paper, a high-speed dynamic acquisition and analysis system and a pressure measuring system are combined to study the impact of a cavitation bubble generated near a wall for various distances between the cavitation bubble and the wall. The results show that (1) with the discriminating criteria of the impact pressure borne by the wall, the critical conditions for the generation of a micro-jet in the collapse process of the cavitation bubbles are obtained, and therefore collapses of cavitation bubbles near the wall are mainly divided into primary impact area collapses, secondary impact area collapses and slow release area collapses; (2) it can be seen from the impact strength of the cavitation bubble collapse on the wall surface that the impact of cavitation bubbles on the wall surface during the first collapse decreases as ? (the dimensionless distance between the cavitation bubble and the wall) increases, but the impact of the second collapse on the wall surface increases first and then decreases sharply. When ? is less than 1.33, the impact on the wall surface is mainly from the first collapse. When ? is between 1.33 and 2.37, the impact on the wall surface is mainly from the second collapse. These conclusions have potential theoretical value for the utilization or prevention and control technologies for cavitation erosion.

 Artículos similares

       
 
Zhike Zou, Longcang Shu, Xing Min and Esther Chifuniro Mabedi    
The artificial recharge of stormwater is an effective approach for replenishing aquifer and reduce urban waterlogging, but prone to clogging by suspended particles (SP) that are highly heterogeneously sized. In this paper, the transport and deposition of... ver más
Revista: Water

 
Zuhier Alakayleh, Xing Fang and T. Prabhakar Clement    
This study aims at furthering our understanding of the Modified Philip?Dunne Infiltrometer (MPDI), which is used to determine the saturated hydraulic conductivity Ks and the Green?Ampt suction head ? at the wetting front. We have developed a forward-mode... ver más
Revista: Water

 
Ewa Stanczyk-Mazanek, Longina Stepniak and Urszula Kepa    
In this paper, we discuss the effect sewage sludge (SS) application has on the contamination of polycyclic aromatic hydrocarbons in fertilized soils and groundwater. Morver, the contents of these compounds in plant biomass was analyzed. For six months, c... ver más
Revista: Water

 
Xiaoni Yang, Juanjuan Ma, Yongye Li, Xihuan Sun, Xiaomeng Jia and Yonggang Li    
Hydraulic transportation of the piped carriage is a new energy-saving and environmentally-friendly transportation mode. There are two main states in the conveying process, stationary and moving. In the process of hydraulic transportation of the piped car... ver más
Revista: Water

 
Taufiq Saidi,Taufiq Saidi,Muttaqin Hasan,Muttaqin Hasan,Zahra Amalia,Muhammad Iqbal,Muhammad Iqbal     Pág. 155 - 164
The use of synthetic Fiber Reinforced Polymer (FRP) as a composite material is an alternative material that has been widely used for strengthening and repairing reinforced concrete structures. However, the high price is one of the obstacles in applying s... ver más