Resumen
The vacuum vessel (VV) inside and outside inspection of the Demonstration Fusion Power Plant (DEMO) is very difficult due to various constraints, such as non-magnet effect material requirements, constrained space, and neutrons on its surfaces. We propose a design method for wall-climbing mobile robots (WMR) based on the vortex principle and investigate key technologies to meet VV inspection requirements. We developed a kinematic model based on the robot?s motion control requirements and a trajectory tracking control algorithm according to the tractrix principle, enabling the robot to follow the path for autonomous inspection. The impeller is designed based on the vortex principle. The aerodynamic characteristics and structural strength of the impeller were also analysed and optimised. A sliding-mode robust pressure control system was designed for the robot?s negative pressure adsorption, and its effectiveness was verified by simulation. Finally, an initial test prototype verified the structural design and vortex adsorption performance. We also addressed the potential applications of the WMR in DEMO and other fusion reactors.