Resumen
Tower foundations are generally of a cast-in-place structure with the disadvantages of low industrialization level and long construction period. The development of prefabricated foundation for transmission line projects is efficient to improve the industrialization level of the construction of tower foundation. In this study, the schemes of post-pouring belt U-shaped steel connection, post-pouring belt lap connection, grouting sleeve connection, and post-tensioned bond prestressed reinforcement connection, which have been widely used on building structures, are newly proposed to apply on plate foundation. The schemes were compared on processing, transporting, on-site constructing and performance. The pseudo-static tests on cast-in-place plate strip, post-pouring belt U-shaped steel connection and post-pouring belt lap connection plate strip were carried out. The results revealed that all the test plate bands were damaged in the bending mode, same as that of ordinary concrete. When U-shaped steel is adopted, more than 90% of the cast-in-place bearing capacity can be reached. The initial stiffness of prefabricated plate strip and cast-in-place strip is basically the same. The load-bearing capacity of the component is relevant to the anchorage length of the U-shaped steel. Although increasing the concrete strength of post-cast belt can improve the ultimate bearing capacity and shorten the construction period, the deformation capacity is reduced. Compared to other connection methods, post-pouring belt U-shaped steel connections have the advantage of simple construction, higher bearing capacity and stability. In summary, the post-pouring belt U-shaped steel connection scheme is recommended.