Redirigiendo al acceso original de articulo en 15 segundos...
ARTÍCULO
TITULO

A Machine-Learning Model for Zonal Ship Flow Prediction Using AIS Data: A Case Study in the South Atlantic States Region

Xuantong Wang    
Jing Li and Tong Zhang    

Resumen

Predicting traffic flow is critical in efficient maritime transportation management, coordination, and planning. Scientists have proposed many prediction methods, most of which are designed for specific locations or for short-term prediction. For the purpose of management, methods that enable long-term prediction for large areas are highly desirable. Therefore, we propose developing a spatiotemporal approach that can describe and predict traffic flows within a region. We designed the model based on a multiple hexagon-based convolutional neural network (mh-CNN) model that takes both the flow dynamics and environmental conditions into account. This model is highly flexible in that it predicts zonal traffic flow within variable time windows. We applied the method to measure and predict the daily and hourly traffic flows in the South Atlantic States region by taking the impacts of extreme weather events into consideration. Results show that our method outperformed other methods in daily prediction during normal days and hourly prediction during hurricane events. Based on the results, we also provide some recommendations regarding the future usage and customization of the model.

 Artículos similares

       
 
Minxing Dong, Jichao Yang, Yushan Fu, Tengfei Fu, Qing Zhao, Xuelei Zhang, Qinzeng Xu and Wenquan Zhang    
The soft coral order Alcyonacea is a common coral found in the deep sea and plays a crucial role in the deep-sea ecosystem. This study aims to predict the distribution of Alcyonacea in the western Pacific Ocean using four machine learning-based species d... ver más

 
Subin Kim, Heejin Hwang, Keunyeong Oh and Jiuk Shin    
The seismically deficient column details in existing reinforced concrete buildings affect the overall behavior of the building depending on the failure type of the column. The purpose of this study is to develop and validate a machine-learning-based pred... ver más
Revista: Applied Sciences

 
Changchang Li, Botao Xu, Zhiwei Chen, Xiaoou Huang, Jing (Selena) He and Xia Xie    
University students, as a special group, face multiple psychological pressures and challenges, making them susceptible to social anxiety disorder. However, there are currently no articles using machine learning algorithms to identify predictors of social... ver más
Revista: Applied Sciences

 
Jiangtao Chen, Jiao Zhao, Wei Xiao, Luogeng Lv, Wei Zhao and Xiaojun Wu    
Given the randomness inherent in fluid dynamics problems and limitations in human cognition, Computational Fluid Dynamics (CFD) modeling and simulation are afflicted with non-negligible uncertainties, casting doubts on the credibility of CFD. Scientifica... ver más
Revista: Aerospace

 
Norah Fahd Alhussainan, Belgacem Ben Youssef and Mohamed Maher Ben Ismail    
Brain tumor diagnosis traditionally relies on the manual examination of magnetic resonance images (MRIs), a process that is prone to human error and is also time consuming. Recent advancements leverage machine learning models to categorize tumors, such a... ver más
Revista: Computation