Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Future Internet  /  Vol: 15 Par: 3 (2023)  /  Artículo
ARTÍCULO
TITULO

A Novel Hybrid Edge Detection and LBP Code-Based Robust Image Steganography Method

Habiba Sultana    
A. H. M. Kamal    
Gahangir Hossain and Muhammad Ashad Kabir    

Resumen

In digital image processing and steganography, images are often described using edges and local binary pattern (LBP) codes. By combining these two properties, a novel hybrid image steganography method of secret embedding is proposed in this paper. This method only employs edge pixels that influence how well the novel approach embeds data. To increase the quantity of computed edge pixels, several edge detectors are applied and hybridized using a logical OR operation. A morphological dilation procedure in the hybridized edge image is employed to this purpose. The least significant bits (LSB) and all LBP codes are calculated for edge pixels. Afterward, these LBP codes, LSBs, and secret bits using an exclusive-OR operation are merged. These resulting implanted bits are delivered to edge pixels? LSBs. The experimental results show that the suggested approach outperforms current strategies in terms of measuring perceptual transparency, such as peak signal-to-noise ratio (PSNR) and structural similarity index (SSI). The embedding capacity per tempered pixel in the proposed approach is also substantial. Its embedding guidelines protect the privacy of implanted data. The entropy, correlation coefficient, cosine similarity, and pixel difference histogram data show that our proposed method is more resistant to various types of cyber-attacks.

Palabras claves

 Artículos similares

       
 
Rastislav Róka    
In this paper, the reasons for the bandwidth and wavelength utilization in future next-generation passive optical networks are presented, and the possibilities for realization and utilization of extended dynamic wavelength and bandwidth algorithms for th... ver más
Revista: Future Internet

 
Sumet Darapisut, Komate Amphawan, Nutthanon Leelathakul and Sunisa Rimcharoen    
Location-based recommender systems (LBRSs) have exhibited significant potential in providing personalized recommendations based on the user?s geographic location and contextual factors such as time, personal preference, and location categories. However, ... ver más

 
Xianlei Fu, Maozhi Wu, Sasthikapreeya Ponnarasu and Limao Zhang    
This research introduces a hybrid deep learning approach to perform real-time forecasting of passenger traffic flow for the metro railway system (MRS). By integrating long short-term memory (LSTM) and the graph convolutional network (GCN), a hybrid deep ... ver más
Revista: Buildings

 
Sadeq Khaleefah Hanoon, Ahmad Fikri Abdullah, Helmi Z. M. Shafri and Aimrun Wayayok    
Land use and land cover changes driven by urban sprawl has accelerated the degradation of ecosystem services in metropolitan settlements. However, most optimisation techniques do not consider the dynamic effect of urban sprawl on the spatial criteria on ... ver más

 
Nima Khodadadi, Ehsan Harati, Francisco De Caso and Antonio Nanni    
This article highlights the absence of published paradigms hybridized by The Cuckoo Search (CS) and Stochastic Paint Optimizer (SPO) for optimizing truss structures using composite materials under natural frequency constraints. The article proposes a nov... ver más
Revista: Buildings