Resumen
This report acquaints the reader with an extra two new shear-horizontal surface acoustic waves (SH-SAWs). These new SH-SAWs can propagate along the free surface of the transversely isotropic (6 mm) magnetoelectroelastic materials. These (composite) materials can simultaneously possess the piezoelectric, piezomagnetic, and magnetoelectric effects. Some competition among these effects can lead to suitable solutions found for the following three possible coupling mechanisms: ea ? he, eµ ? ha, eµ ? a2. Here, the mechanically free interface between the solid and a vacuum was considered. This report discovers the twelfth (thirteenth) new SH-SAW for the magnetically closed (electrically open) case and continuity of both the normal component of the electrical (magnetic) displacement and the electrical (magnetic) potential when the coupling mechanism ea ? he (eµ ? ha) works. The propagation velocities were obtained in explicit forms that take into account the contribution of the vacuum material parameters. The discovered waves were then graphically studied for the purpose of disclosing the dissipation phenomenon (the propagation velocity becomes imaginary) caused by the coupling with the vacuum properties. The obtained results can be useful for further investigations of interfacial and plate SH-waves, constitution of technical devices, nondestructive testing and evaluation, and application of some gravitational phenomena.