Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Future Internet  /  Vol: 13 Par: 1 (2021)  /  Artículo
ARTÍCULO
TITULO

Using Machine Learning for Web Page Classification in Search Engine Optimization

Goran Mato?evic    
Jasminka Dob?a and Dunja Mladenic    

Resumen

This paper presents a novel approach of using machine learning algorithms based on experts? knowledge to classify web pages into three predefined classes according to the degree of content adjustment to the search engine optimization (SEO) recommendations. In this study, classifiers were built and trained to classify an unknown sample (web page) into one of the three predefined classes and to identify important factors that affect the degree of page adjustment. The data in the training set are manually labeled by domain experts. The experimental results show that machine learning can be used for predicting the degree of adjustment of web pages to the SEO recommendations?classifier accuracy ranges from 54.59% to 69.67%, which is higher than the baseline accuracy of classification of samples in the majority class (48.83%). Practical significance of the proposed approach is in providing the core for building software agents and expert systems to automatically detect web pages, or parts of web pages, that need improvement to comply with the SEO guidelines and, therefore, potentially gain higher rankings by search engines. Also, the results of this study contribute to the field of detecting optimal values of ranking factors that search engines use to rank web pages. Experiments in this paper suggest that important factors to be taken into consideration when preparing a web page are page title, meta description, H1 tag (heading), and body text?which is aligned with the findings of previous research. Another result of this research is a new data set of manually labeled web pages that can be used in further research.

 Artículos similares

       
 
Dhiaa Musleh, Ali Alkhwaja, Ibrahim Alkhwaja, Mohammed Alghamdi, Hussam Abahussain, Mohammed Albugami, Faisal Alfawaz, Said El-Ashker and Mohammed Al-Hariri    
Obesity is increasingly becoming a prevalent health concern among adolescents, leading to significant risks like cardiometabolic diseases (CMDs). The early discovery and diagnosis of CMD is essential for better outcomes. This study aims to build a reliab... ver más

 
Qingyan Wang, Longzhi Sun and Xuan Yang    
Rice yield is essential to global food security under increasingly frequent and severe climate change events. Spatial analysis of rice yields becomes more critical for regional action to ensure yields and reduce climate impacts. However, the understandin... ver más

 
Zijia Zheng, Yizhu Jiang, Qiutong Zhang, Yanling Zhong and Lizheng Wang    
The timely monitoring of urban water bodies using unmanned aerial vehicle (UAV)-mounted remote sensing technology is crucial for urban water resource protection and management. Addressing the limitations of the use of satellite data in inferring the wate... ver más
Revista: Water

 
Juan Ma, Qiang Yang, Mingzhi Zhang, Yao Chen, Wenyi Zhao, Chengyu Ouyang and Dongping Ming    
Accurately predicting landslide deformation based on monitoring data is key to successful early warning of landslide disasters. Landslide displacement?time curves offer an intuitive reflection of the landslide motion process and deformation predictions o... ver más
Revista: Water

 
Tianyu Xi, Ming Wang, Enjia Cao, Jin Li, Yong Wang and Salanke Umar Sa?ad    
The thermal comfort evaluation of the urban environment arouses widespread concern among scholars, and research in this field is mostly based on thermal comfort evaluation indexes such as PMV, PET, SET, UTCI, etc. These thermal comfort index evaluation m... ver más
Revista: Buildings