Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Algorithms  /  Vol: 12 Par: 10 (2019)  /  Artículo
ARTÍCULO
TITULO

GASP: Genetic Algorithms for Service Placement in Fog Computing Systems

Claudia Canali and Riccardo Lancellotti    

Resumen

Fog computing is becoming popular as a solution to support applications based on geographically distributed sensors that produce huge volumes of data to be processed and filtered with response time constraints. In this scenario, typical of a smart city environment, the traditional cloud paradigm with few powerful data centers located far away from the sources of data becomes inadequate. The fog computing paradigm, which provides a distributed infrastructure of nodes placed close to the data sources, represents a better solution to perform filtering, aggregation, and preprocessing of incoming data streams reducing the experienced latency and increasing the overall scalability. However, many issues still exist regarding the efficient management of a fog computing architecture, such as the distribution of data streams coming from sensors over the fog nodes to minimize the experienced latency. The contribution of this paper is two-fold. First, we present an optimization model for the problem of mapping data streams over fog nodes, considering not only the current load of the fog nodes, but also the communication latency between sensors and fog nodes. Second, to address the complexity of the problem, we present a scalable heuristic based on genetic algorithms. We carried out a set of experiments based on a realistic smart city scenario: the results show how the performance of the proposed heuristic is comparable with the one achieved through the solution of the optimization problem. Then, we carried out a comparison among different genetic evolution strategies and operators that identify the uniform crossover as the best option. Finally, we perform a wide sensitivity analysis to show the stability of the heuristic performance with respect to its main parameters.

 Artículos similares

       
 
Esra?a Alkafaween, Ahmad Hassanat, Ehab Essa and Samir Elmougy    
The genetic algorithm (GA) is a well-known metaheuristic approach for dealing with complex problems with a wide search space. In genetic algorithms (GAs), the quality of individuals in the initial population is important in determining the final optimal ... ver más
Revista: Applied Sciences

 
Jun Li, Javed Iqbal Tanoli, Miao Zhou and Filip Gurkalo    
Based on an improved genetic algorithm and debris flow disaster monitoring network, this study examines the monitoring and early warning method of debris flow expansion behavior, divides the risk of debris flow disaster, and provides a scientific basis f... ver más
Revista: Water

 
Mukhtar Zhassuzak, Marat Akhmet, Yedilkhan Amirgaliyev and Zholdas Buribayev    
Unpredictable strings are sequences of data with complex and erratic behavior, which makes them an object of interest in various scientific fields. Unpredictable strings related to chaos theory was investigated using a genetic algorithm. This paper prese... ver más
Revista: Algorithms

 
Raymundo Peña-García, Rodolfo Daniel Velázquez-Sánchez, Cristian Gómez-Daza-Argumedo, Jonathan Omega Escobedo-Alva, Ricardo Tapia-Herrera and Jesús Alberto Meda-Campaña    
This research introduces a physics-based identification technique utilizing genetic algorithms. The primary objective is to derive a parametric matrix, denoted as A, describing the time-invariant linear model governing the longitudinal dynamics of an air... ver más
Revista: Aerospace

 
Sharoon Saleem, Fawad Hussain and Naveed Khan Baloch    
Network on Chip (NoC) has emerged as a potential substitute for the communication model in modern computer systems with extensive integration. Among the numerous design challenges, application mapping on the NoC system poses one of the most complex and d... ver más
Revista: Algorithms