Resumen
Nanofiltration and reverse osmosis are used in the concentration of grape musts in winemaking. Both technologies offer an effective way to concentrate the grape musts, reducing the volume and the solids content to achieve desired characteristics in the final wine. The choice between nanofiltration and reverse osmosis depends on the specific needs of the winemaker and the desired characteristics. It is important to carefully consider the properties of the grape musts and the performance of the selected membranes to optimize the concentration process and ensure the desired outcome. Herein, we present a novel approach that allows us to choose a suitable membrane for an optimal industrial process for the concentration of musts, both in reverse osmosis and nanofiltration. The proposed method consists of combining the fitting equations of laboratory results with the balance equations on the industrial plant. Specifically, a full-scale plant has been designed and assembled with which grape musts of Trebbiano, Verdeca, Black Bombino, and White Bombino varieties have been concentrated through the selected best-performing membranes. Results of the proposed approach show that grape musts with sugar content commercially appreciated when the membranes work at high pressure can be obtained.