Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Water  /  Vol: 16 Par: 4 (2024)  /  Artículo
ARTÍCULO
TITULO

Study on the Hydrodynamic Performance of Swing-Type Flapping Hydrofoil Bionic Pumps Affected by Foil Camber

Qizong Sun    
Ertian Hua    
Liying Sun    
Linfeng Qiu    
Yabo Song and Mingwang Xiang    

Resumen

The flapping hydrofoil bionic pump is an innovative hydrodynamic device that utilizes flapping hydrofoil technology. Flapping hydrofoil bionic pumps are crucial in addressing issues like inadequate river hydropower and limited water purification capabilities in flat river network regions. Optimizing the foil characteristics is essential for enhancing the hydrodynamic efficiency of the flapping hydrofoil bionic pump. This study investigates the impact of foil camber parameters on the hydrodynamic performance of swing-type asymmetric flapping bionic pumps. The NACA series standard foils with varying cambers are analyzed using the overlapping grid technology and finite volume method. The thrust coefficient, flow rate, pumping efficiency, and flow field structure of the flapping hydrofoil bionic pump are examined under pressure inlet conditions with the foil camber. The findings indicate that increasing the foil?s curvature within a specific range can greatly enhance the maximum values of thrust coefficient, propulsive efficiency, and pumping efficiency of the flapping hydrofoil bionic pump. Specifically, when the foil curvature is 6%c, the maximum value of the instantaneous thrust coefficient of the flapping hydrofoil bionic pump is significantly improved by 31.25% compared to the symmetric foil type under the condition of an oscillating frequency of f = 1 HZ. The flapping hydrofoil bionic pump achieves its maximum pumping efficiency when the oscillation frequency is within the range of f = 2.5 Hz. This efficiency is 11.7% greater than that of the symmetric foil, and it occurs when the foil curvature is 8%c. Within the frequency range of f > 2.5 Hz, the flapping hydrofoil bionic pump that has a foil curvature of 6%c exhibits the highest enhancement in pumping efficiency. It achieves a maximum increase of 12.8% compared to the symmetric foil type. Nevertheless, the average head was less than 0.4 m, making it suitable for ultra-low-head applications.

 Artículos similares

       
 
Bon-Ho Gu, Seung-Buhm Woo, Jae-Il Kwon, Sung-Hwan Park and Nam-Hoon Kim    
This study presents a comprehensive analysis of contaminant transport in estuarine environments, focusing on the impact of tidal creeks and flats. The research employs advanced hydrodynamic models with irregular grid systems and conducts a detailed resid... ver más
Revista: Water

 
Yangxin Zhang, Jiangmei Zhang, Tuantuan Liu, Xinghua Feng, Tengxiang Xie and Haolin Liu    
Many nuclear power plants have been built along China?s coasts, and the migration and diffusion of radioactive nuclides in coastal harbours is very concerning. In this study, considering the decay and free diffusion of radioactive nuclides, a local hydro... ver más
Revista: Water

 
Yunfei Yang, Zhicheng Zhang, Jiapeng Zhao, Bin Zhang, Lei Zhang, Qi Hu and Jianglong Sun    
Resistance serves as a critical performance metric for ships. Swift and accurate resistance prediction can enhance ship design efficiency. Currently, methods for determining ship resistance encompass model tests, estimation techniques, and computational ... ver más

 
Chinh Lieou, Serge Jolicoeur, Thomas Guyondet, Stéphane O?Carroll and Tri Nguyen-Quang    
This study examines the hydrodynamic regimes in Shediac Bay, located in New Brunswick, Canada, with a focus on the breach in the Grande-Digue sand spit. The breach, which was developed in the mid-1980s, has raised concerns about its potential impacts on ... ver más

 
Zhipeng Zang, Zhuo Fang, Kuan Qiao, Limeng Zhao and Tongming Zhou    
A three-dimensional numerical model was established based on ANSYS-AQWA (R19.0) software for the purpose of analyzing the hydrodynamic characteristics of a floating breakwater. This study examines three distinct floating breakwaters with different cross-... ver más