Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Drones  /  Vol: 3 Par: 3 (2019)  /  Artículo
ARTÍCULO
TITULO

Deep Learning-Based Damage Detection from Aerial SfM Point Clouds

Mohammad Ebrahim Mohammadi    
Daniel P. Watson and Richard L. Wood    

Resumen

Aerial data collection is well known as an efficient method to study the impact following extreme events. While datasets predominately include images for post-disaster remote sensing analyses, images alone cannot provide detailed geometric information due to a lack of depth or the complexity required to extract geometric details. However, geometric and color information can easily be mined from three-dimensional (3D) point clouds. Scene classification is commonly studied within the field of machine learning, where a workflow follows a pipeline operation to compute a series of engineered features for each point and then points are classified based on these features using a learning algorithm. However, these workflows cannot be directly applied to an aerial 3D point cloud due to a large number of points, density variation, and object appearance. In this study, the point cloud datasets are transferred into a volumetric grid model to be used in the training and testing of 3D fully convolutional network models. The goal of these models is to semantically segment two areas that sustained damage after Hurricane Harvey, which occurred in 2017, into six classes, including damaged structures, undamaged structures, debris, roadways, terrain, and vehicles. These classes are selected to understand the distribution and intensity of the damage. The point clouds consist of two distinct areas assembled using aerial Structure-from-Motion from a camera mounted on an unmanned aerial system. The two datasets contain approximately 5000 and 8000 unique instances, and the developed methods are assessed quantitatively using precision, accuracy, recall, and intersection over union metrics.

 Artículos similares

       
 
Zhongda Ren, Chuanjie Liu, Yafei Ou, Peng Zhang, Heshan Fan, Xiaolong Zhao, Heqin Cheng, Lizhi Teng, Ming Tang and Fengnian Zhou    
Effectively simulating the variation in suspended sediment concentration (SSC) in estuaries during typhoons is significant for the water quality and ecological conditions of estuarine shoal wetlands and their adjacent coastal waters. During typhoons, SSC... ver más
Revista: Water

 
Minghao Liu, Qingxi Luo, Jianxiang Wang, Lingbo Sun, Tingting Xu and Enming Wang    
Land use/cover change (LUCC) refers to the phenomenon of changes in the Earth?s surface over time. Accurate prediction of LUCC is crucial for guiding policy formulation and resource management, contributing to the sustainable use of land, and maintaining... ver más

 
Ching-Lung Fan    
The emergence of deep learning-based classification methods has led to considerable advancements and remarkable performance in image recognition. This study introduces the Multiscale Feature Convolutional Neural Network (MSFCNN) for the extraction of com... ver más

 
Yuhwan Kim, Chang-Ho Choi, Chang-Young Park and Seonghyun Park    
In today?s society, where people spend over 90% of their time indoors, indoor air quality (IAQ) is crucial for sustaining human life. However, as various indoor activities such as cooking generate diverse types of pollutants in indoor spaces, IAQ has eme... ver más
Revista: Buildings

 
Yu Guo, Guigen Nie, Wenliang Gao and Mi Liao    
Semantic segmentation is a critical task in computer vision that aims to assign each pixel in an image a corresponding label on the basis of its semantic content. This task is commonly referred to as dense labeling because it requires pixel-level classif... ver más
Revista: Future Internet