Resumen
The identification of deterioration mechanisms and their monitoring over time is an essential phase for conservation. This work aimed at developing a novel approach for deterioration mapping and monitoring based on 360° images, which allows for simple and rapid data collection. The opportunity to capture the whole scene around a 360° camera reduces the number of images needed in a condition mapping project, resulting in a powerful solution to document small and narrow spaces. The paper will describe the implemented workflow for deterioration mapping based on 360° images, which highlights pathologies on surfaces and quantitatively measures their extension. Such a result will be available as standard outputs as well as an innovative virtual environment for immersive visualization. The case of multi-temporal data acquisition will be considered and discussed as well. Multiple 360° images acquired at different epochs from slightly different points are co-registered to obtain pixel-to-pixel correspondence, providing a solution to quantify and track deterioration effects.