Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Applied Sciences  /  Vol: 11 Par: 14 (2021)  /  Artículo
ARTÍCULO
TITULO

Using Convolutional Neural Network and Candlestick Representation to Predict Sports Match Outcomes

Yu-Chia Hsu    

Resumen

The interdisciplinary nature of sports and the presence of various systemic and non-systemic factors introduce challenges in predicting sports match outcomes using a single disciplinary approach. In contrast to previous studies that use sports performance metrics and statistical models, this study is the first to apply a deep learning approach in financial time series modeling to predict sports match outcomes. The proposed approach has two main components: a convolutional neural network (CNN) classifier for implicit pattern recognition and a logistic regression model for match outcome judgment. First, the raw data used in the prediction are derived from the betting market odds and actual scores of each game, which are transformed into sports candlesticks. Second, CNN is used to classify the candlesticks time series on a graphical basis. To this end, the original 1D time series are encoded into 2D matrix images using Gramian angular field and are then fed into the CNN classifier. In this way, the winning probability of each matchup team can be derived based on historically implied behavioral patterns. Third, to further consider the differences between strong and weak teams, the CNN classifier adjusts the probability of winning the match by using the logistic regression model and then makes a final judgment regarding the match outcome. We empirically test this approach using 18,944 National Football League game data spanning 32 years and find that using the individual historical data of each team in the CNN classifier for pattern recognition is better than using the data of all teams. The CNN in conjunction with the logistic regression judgment model outperforms the CNN in conjunction with SVM, Naïve Bayes, Adaboost, J48, and random forest, and its accuracy surpasses that of betting market prediction.

 Artículos similares

       
 
Shaoyan Zuo, Dazhi Wang, Xiao Wang, Liujia Suo, Shuaiwu Liu, Yongqing Zhao and Dewang Liu    
In this study, a deep learning network for extracting spatial-temporal features is proposed to estimate significant wave height (???? H s ) and wave period (???? T s ) from X-band marine radar images. Since the shore-based radar image in this study is in... ver más

 
Ana Corceiro, Nuno Pereira, Khadijeh Alibabaei and Pedro D. Gaspar    
The global population?s rapid growth necessitates a 70% increase in agricultural production, posing challenges exacerbated by weed infestation and herbicide drawbacks. To address this, machine learning (ML) models, particularly convolutional neural netwo... ver más
Revista: Algorithms

 
Mingyoung Jeng, Alvir Nobel, Vinayak Jha, David Levy, Dylan Kneidel, Manu Chaudhary, Ishraq Islam, Evan Baumgartner, Eade Vanderhoof, Audrey Facer, Manish Singh, Abina Arshad and Esam El-Araby    
Convolutional neural networks (CNNs) have proven to be a very efficient class of machine learning (ML) architectures for handling multidimensional data by maintaining data locality, especially in the field of computer vision. Data pooling, a major compon... ver más
Revista: Algorithms

 
Kalyan Chatterjee, M. Raju, N. Selvamuthukumaran, M. Pramod, B. Krishna Kumar, Anjan Bandyopadhyay and Saurav Mallik    
According to global data on visual impairment from the World Health Organization in 2010, an estimated 285 million individuals, including 39 million who are blind, face visual impairments. These individuals use non-contact methods such as voice commands ... ver más
Revista: Information

 
Yin Tang, Lizhuo Zhang, Dan Huang, Sha Yang and Yingchun Kuang    
In view of the current problems of complex models and insufficient data processing in ultra-short-term prediction of photovoltaic power generation, this paper proposes a photovoltaic power ultra-short-term prediction model named HPO-KNN-SRU, based on a S... ver más
Revista: Applied Sciences