Redirigiendo al acceso original de articulo en 21 segundos...
ARTÍCULO
TITULO

Geohazards Susceptibility Assessment along the Upper Indus Basin Using Four Machine Learning and Statistical Models

Hilal Ahmad    
Chen Ningsheng    
Mahfuzur Rahman    
Md Monirul Islam    
Hamid Reza Pourghasemi    
Syed Fahad Hussain    
Jules Maurice Habumugisha    
Enlong Liu    
Han Zheng    
Huayong Ni and Ashraf Dewan    

Resumen

The China?Pakistan Economic Corridor (CPEC) project passes through the Karakoram Highway in northern Pakistan, which is one of the most hazardous regions of the world. The most common hazards in this region are landslides and debris flows, which result in loss of life and severe infrastructure damage every year. This study assessed geohazards (landslides and debris flows) and developed susceptibility maps by considering four standalone machine-learning and statistical approaches, namely, Logistic Regression (LR), Shannon Entropy (SE), Weights-of-Evidence (WoE), and Frequency Ratio (FR) models. To this end, geohazard inventories were prepared using remote sensing techniques with field observations and historical hazard datasets. The spatial relationship of thirteen conditioning factors, namely, slope (degree), distance to faults, geology, elevation, distance to rivers, slope aspect, distance to road, annual mean rainfall, normalized difference vegetation index, profile curvature, stream power index, topographic wetness index, and land cover, with hazard distribution was analyzed. The results showed that faults, slope angles, elevation, lithology, land cover, and mean annual rainfall play a key role in controlling the spatial distribution of geohazards in the study area. The final susceptibility maps were validated against ground truth points and by plotting Area Under the Receiver Operating Characteristic (AUROC) curves. According to the AUROC curves, the success rates of the LR, WoE, FR, and SE models were 85.30%, 76.00, 74.60%, and 71.40%, and their prediction rates were 83.10%, 75.00%, 73.50%, and 70.10%, respectively; these values show higher performance of LR over the other three models. Furthermore, 11.19%, 9.24%, 10.18%, 39.14%, and 30.25% of the areas corresponded to classes of very-high, high, moderate, low, and very-low susceptibility, respectively. The developed geohazard susceptibility map can be used by relevant government officials for the smooth implementation of the CPEC project at the regional scale.

 Artículos similares

       
 
Jingru Ma, Xiaodong Wang and Guangxiang Yuan    
The traditional susceptibility evaluation of geological hazards usually comprises a global susceptibility evaluation of the entire study area but ignores the differences between the local areas caused by spatial non-stationarity. In view of this, the geo... ver más

 
Abdelrahman Khalifa, Bashar Bashir, Abdullah Alsalman, Sambit Prasanajit Naik and Rosa Nappi    
Evaluating and predicting the occurrence and spatial remarks of climate and rainfall-related destructive hazards is a big challenge. Periodically, Sinai Peninsula is suffering from natural risks that enthuse researchers to provide the area more attention... ver más
Revista: Water

 
André M. Claro, André Fonseca, Helder Fraga and João A. Santos    
The susceptibility to precipitation extreme events (PEEs) and aridity in the Iberian Peninsula (IP) were assessed over a long historical period (1950?2022). Eight extreme precipitation and two aridity indices were calculated. Furthermore, two newly devel... ver más
Revista: Water

 
Yunkai Ruan, Ranran Huo, Jinzi Chen, Weicheng Liu, Xin Zhou, Tanhua Wang, Mingzhi Hou and Wei Huang    
Combined with visible light remote sensing technology and InSAR technology, this study employed the fundamental principles of the frequency ratio model, information content model, and analytic hierarchy process to assess the susceptibility of the study a... ver más
Revista: Water

 
Gaurav Parajuli, Shankar Neupane, Sandeep Kunwar, Ramesh Adhikari and Tri Dev Acharya    
Flood is one of the most frequently occurring and devastating disasters in Nepal. Several locations in Nepal are at high risk of flood, which requires proper guidance on early warning and safe evacuation of people to emergency locations through optimal r... ver más