Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 17 (2020)  /  Artículo
ARTÍCULO
TITULO

Design and Performance Analysis for the Low-Power Holding Mechanism of the All-Electric Subsea Gate Valve Actuator

Honghai Wang    
Peng Jia    
Liquan Wang    
Feihong Yun    
Gang Wang    
Aiguo Zhang    
Min Xu and Xiangyu Wang    

Resumen

The all-electric subsea gate valve actuator is one of the critical components of the all-electric subsea production control system. To bridge the gap of the low-power holding mechanism in the all-electric subsea gate valve actuator of the subsea production system, minimize the power consumption and cable number for control and improve the open-position keeping performance of all-electric subsea gate valve actuator, this paper proposed a novel low-power holding mechanism for the all-electric subsea gate valve actuator which can be applied to all-electric subsea gate valve actuators with various valve sizes and process pressure ratings. The proposed low-power holding mechanism uses an electromagnet as a driving element, combines the spiral transmission and the cam-like transmission, and only requires a holding force of approximately 2?7% of the maximum load of the closing spring to keep the valve open. The proposed low-power holding mechanism converts the axial force of the closing spring into the circumferential force, which substantially reduces the output force required for the driving element of the low-power holding mechanism and the number of the actuator?s control cables. Analytic models are created for the lockable maximum load of the closing spring and the permissible stroke of the locking tab with regard to the design variables. The parameter effects and the corresponding sensitivities are discussed by numerical analysis. The design parameters and the lockable maximum load of the closing spring of the low-power holding mechanism are obtained.

 Artículos similares

       
 
Jose M. Bernal-de-Lázaro     Pág. 74 - 81
This article summarizes the main contributions of the PhD thesis titled: "Application of learning techniques based on kernel methods for the fault diagnosis in Industrial processes". This thesis focuses on the analysis and design of fault diagnosis syste... ver más

 
Yannian Yang, Yu Liang, Stefan Pröbsting, Pengyu Li, Haoyu Zhang, Benxu Huang, Chaofan Liu, Hailong Pei and Bernd R. Noack    
In the near future, urban air mobility (UAM) will let an old dream of human society come true: affordable and fast air transportation for almost everyone. Among the various existing designs, the multicopter configuration best combines the advantages of c... ver más
Revista: Aerospace

 
Yan Xu, Yilong Yang, He Huang, Gang Chen, Guangxing Li and Huajian Chen    
To improve the cushioning performance of soft-landing systems, a novel origami-inspired combined cushion airbag is proposed. The geometry size, initial pressure, and exhaust vent area of the cushion airbags are designed preliminarily using a theoretical ... ver más
Revista: Aerospace

 
Giovanni Gugliandolo, Antonino Quattrocchi, Giuseppe Campobello, Giovanni Crupi and Nicola Donato    
In recent years, inkjet printing has emerged as a promising advanced fabrication technology in the field of electronics, offering remarkable advantages in terms of cost-effectiveness, design flexibility, and rapid prototyping. For these reasons, inkjet p... ver más
Revista: Instruments

 
Roberto Scigliano, Valeria De Simone, Roberta Fusaro, Davide Ferretto and Nicole Viola    
The design of integrated and highly efficient solutions for thermal management is a key capability for different aerospace products, ranging from civil aircraft using hydrogen on board to miniaturized satellites. In particular, this paper discloses a nov... ver más
Revista: Aerospace