Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Future Internet  /  Vol: 15 Par: 7 (2023)  /  Artículo
ARTÍCULO
TITULO

An IoT System and MODIS Images Enable Smart Environmental Management for Mekong Delta

Vu Hien Phan    
Danh Phan Hong Pham    
Tran Vu Pham    
Kashif Naseer Qureshi and Cuong Pham-Quoc    

Resumen

The smart environmental management system proposed in this work offers a new approach to environmental monitoring by utilizing data from IoT stations and MODIS satellite imagery. The system is designed to be deployed in vast regions, such as the Mekong Delta, with low building and operating costs, making it a cost-effective solution for environmental monitoring. The system leverages telemetry data collected by IoT stations in combination with MODIS MOD09GA, MOD11A1, and MCD19A2 daily image products to develop computational models that calculate the values land surface temperature (LST), 2.5 and 10 (µm) particulate matter mass concentrations (PM2.5 and PM10) in areas without IoT stations. The MOD09GA product provides land surface spectral reflectance from visible to shortwave infrared wavelengths to determine land cover types. The MOD11A1 product provides thermal infrared emission from the land surface to compute LST. The MCD19A2 product provides aerosol optical depth values to detect the presence of atmospheric aerosols, e.g., PM2.5 and PM10. The collected data, including remote sensing images and telemetry sensor data, are preprocessed to eliminate redundancy and stored in cloud storage services for further processing. This allows for automatic retrieval and computation of the data by the smart data processing engine, which is designed to process various data types including images and videos from cameras and drones. The calculated values are then made available through a graphic user interface (GUI) that can be accessed through both desktop and mobile devices. The GUI provides real-time visualization of the monitoring values, as well as alerts to administrators based on predetermined rules and values of the data. This allows administrators to easily monitor the system, configure the system by setting alerting rules or calibrating the ground stations, and take appropriate action in response to alerts. Experimental results from the implementation of the system in Dong Thap Province in the Mekong Delta show that the linear regression models for PM2.5 and PM10 estimations from MCD19A2 AOD values have correlation coefficients of 0.81 and 0.68, and RMSEs of 4.11 and 5.74 µg/m3" role="presentation" style="position: relative;">33 3 , respectively. Computed LST values from MOD09GA and MOD11A1 reflectance and emission data have a correlation coefficient of 0.82 with ground measurements of air temperature. These errors are comparable to other models reported in similar regions in the literature, demonstrating the effectiveness and accuracy of the proposed system.

 Artículos similares

       
 
Arpad Takacs and Tamas Haidegger    
The significance of V2X (Vehicle-to-Everything) technology in the context of highly automated and autonomous vehicles can hardly be overestimated. While V2X is not considered a standalone technology for achieving high automation, it is recognized as a sa... ver más
Revista: Future Internet

 
Muhammad Nafees Ulfat Khan, Weiping Cao, Zhiling Tang, Ata Ullah and Wanghua Pan    
The rapid development of the Internet of Things (IoT) has opened the way for transformative advances in numerous fields, including healthcare. IoT-based healthcare systems provide unprecedented opportunities to gather patients? real-time data and make ap... ver más
Revista: Future Internet

 
Adwitiya Mukhopadhyay, Aryadevi Remanidevi Devidas, Venkat P. Rangan and Maneesha Vinodini Ramesh    
Addressing the inadequacy of medical facilities in rural communities and the high number of patients affected by ailments that need to be treated immediately is of prime importance for all countries. The various recent healthcare emergency situations bri... ver más
Revista: Future Internet

 
Hassan Khazane, Mohammed Ridouani, Fatima Salahdine and Naima Kaabouch    
With the rapid advancements and notable achievements across various application domains, Machine Learning (ML) has become a vital element within the Internet of Things (IoT) ecosystem. Among these use cases is IoT security, where numerous systems are dep... ver más
Revista: Future Internet

 
Mohammad Javad Salariseddigh, Ons Dabbabi, Christian Deppe and Holger Boche    
Numerous applications of the Internet of Things (IoT) feature an event recognition behavior where the established Shannon capacity is not authorized to be the central performance measure. Instead, the identification capacity for such systems is considere... ver más
Revista: Future Internet