Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Future Internet  /  Vol: 13 Par: 2 (2021)  /  Artículo
ARTÍCULO
TITULO

High Performance Graph Data Imputation on Multiple GPUs

Chao Zhou and Tao Zhang    

Resumen

In real applications, massive data with graph structures are often incomplete due to various restrictions. Therefore, graph data imputation algorithms have been widely used in the fields of social networks, sensor networks, and MRI to solve the graph data completion problem. To keep the data relevant, a data structure is represented by a graph-tensor, in which each matrix is the vertex value of a weighted graph. The convolutional imputation algorithm has been proposed to solve the low-rank graph-tensor completion problem that some data matrices are entirely unobserved. However, this data imputation algorithm has limited application scope because it is compute-intensive and low-performance on CPU. In this paper, we propose a scheme to perform the convolutional imputation algorithm with higher time performance on GPUs (Graphics Processing Units) by exploiting multi-core GPUs of CUDA architecture. We propose optimization strategies to achieve coalesced memory access for graph Fourier transform (GFT) computation and improve the utilization of GPU SM resources for singular value decomposition (SVD) computation. Furthermore, we design a scheme to extend the GPU-optimized implementation to multiple GPUs for large-scale computing. Experimental results show that the GPU implementation is both fast and accurate. On synthetic data of varying sizes, the GPU-optimized implementation running on a single Quadro RTX6000 GPU achieves up to 60.50× 60.50 × speedups over the GPU-baseline implementation. The multi-GPU implementation achieves up to 1.81× 1.81 × speedups on two GPUs versus the GPU-optimized implementation on a single GPU. On the ego-Facebook dataset, the GPU-optimized implementation achieves up to 77.88× 77.88 × speedups over the GPU-baseline implementation. Meanwhile, the GPU implementation and the CPU implementation achieve similar, low recovery errors.

Palabras claves

 Artículos similares

       
 
Márta Simon, Alvise Vianello and Jes Vollertsen    
In this paper, we evaluate the performance of a disc filter that retains microplastic (MP) particles from treated wastewater. A focal plane array-based Fourier transform infrared imaging technique enabled MP quantification and an in-house-built software ... ver más
Revista: Water

 
Rick Jaeger, Carolyn Jacobs, Katharina Tondera and Neil Tindale    
This study investigated different approaches to optimize flows in misaligned culverts. Structures aligned with the natural stream are always preferred, as misalignments cause a change of direction at the culvert inlet associated with lower performance an... ver más
Revista: Water

 
Saher Ayyad, Islam S. Al Zayed, Van Tran Thi Ha and Lars Ribbe    
Monitoring of crop water consumption, also known as actual evapotranspiration (ETa), is crucial for the prudent use of limited freshwater resources. Remote-sensing-based algorithms have become a popular approach for providing spatio-temporal information ... ver más
Revista: Water

 
Byung-Moon Jun, Yejin Kim, Jonghun Han, Yeomin Yoon, Jeonggwan Kim and Chang Min Park    
For this study, we applied activated biochar (AB) and its composition with magnetite (AB-Fe3O4) as adsorbents for the removal of polychlorophenols in model wastewater. We comprehensively characterized these adsorbents and performed adsorption tests under... ver más
Revista: Water

 
M.H.J.P. Gunarathna, Kazuhito Sakai, Tamotsu Nakandakari, Kazuro Momii and M.K.N. Kumari    
Poor data availability on soil hydraulic properties in tropical regions hampers many studies, including crop and environmental modeling. The high cost and effort of measurement and the increasing demand for such data have driven researchers to search for... ver más
Revista: Water