Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Applied System Innovation  /  Vol: 6 Par: 5 (2023)  /  Artículo
ARTÍCULO
TITULO

Application of Deep Learning in the Early Detection of Emergency Situations and Security Monitoring in Public Spaces

William Villegas-Ch and Jaime Govea    

Resumen

This article addresses the need for early emergency detection and safety monitoring in public spaces using deep learning techniques. The problem of discerning relevant sound events in urban environments is identified, which is essential to respond quickly to possible incidents. To solve this, a method is proposed based on extracting acoustic features from captured audio signals and using a deep learning model trained with data collected both from the environment and from specialized libraries. The results show performance metrics such as precision, completeness, F1-score, and ROC-AUC curve and discuss detailed confusion matrices and false positive and negative analysis. Comparing this approach with related works highlights its effectiveness and potential in detecting sound events. The article identifies areas for future research, including incorporating real-world data and exploring more advanced neural architectures, and reaffirms the importance of deep learning in public safety.

 Artículos similares

       
 
Piotr Sliz    
Purpose: The advancements in deep learning and AI technologies have led to the development of such language models, in 2022, as OpenAI?s ChatGPT. The primary objective of this paper is to thoroughly examine the capabilities of ChatGPT within the realm of... ver más

 
Beichen Lu, Yanjun Liu, Xiaoyu Zhai, Li Zhang and Yun Chen    
In recent years, clean and renewable energy sources have received much attention to balance the contradiction between resource needs and environmental sustainability. Among them, ocean thermal energy conversion (OTEC), which consists of surface warm seaw... ver más

 
Ji-Woon Lee and Hyun-Soo Kang    
The escalating use of security cameras has resulted in a surge in images requiring analysis, a task hindered by the inefficiency and error-prone nature of manual monitoring. In response, this study delves into the domain of anomaly detection in CCTV secu... ver más
Revista: Applied Sciences

 
Julia Mayer, Martin Memmel, Johannes Ruf, Dhruv Patel, Lena Hoff and Sascha Henninger    
Urban tree cadastres, crucial for climate adaptation and urban planning, face challenges in maintaining accuracy and completeness. A transdisciplinary approach in Kaiserslautern, Germany, complements existing incomplete tree data with additional precise ... ver más
Revista: Applied Sciences

 
Xiaoyan Shi, Fuming Yang, Enzhu Hou and Zhongzhu Liang    
Metalenses, with their unique modulation of light, are in great demand for many potential applications. As a proof-of-principle demonstration, we focus on designing SiO2 metalenses that operate in the deep ultraviolet region, specifically around 193 nm. ... ver más
Revista: Applied Sciences