Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 23 (2020)  /  Artículo
ARTÍCULO
TITULO

A Numerical Study on the Flow Characteristics and Flow Uniformity of Vanadium Redox Flow Battery Flow Frame

Jun-Yong Park    
Deok-Young Sohn and Yun-Ho Choi    

Resumen

As the demand for electrical energy increases worldwide, the amounts of harmful gases in the atmosphere, such as carbon dioxide released by burning fossil fuel, are continuously increasing. As a result, the interest in renewable energy resources has been growing. However, renewable energies have fluctuating output characteristics according to local conditions such as the natural environment and geographical characteristics, which is a major factor deteriorating output quality. Recently, energy storage systems (ESSs) have been actively studied as a solution to this problem. A redox flow battery (RFB) is a system in which an active material dissolved in an electrolyte is oxidized/reduced to charge/discharge. A RFB mainly consists of an electrolyte tank, which determines the capacity, and a cell stack, which determines the output. As these components can be independently controlled, a RFB provides the advantages of a large capacity and a long lifespan. In this study, a new flow channel was designed to maximize the reaction area and reduce the pump loss to improve RFB performance. Computational fluid dynamics (CFD) and visualization experiments were used to analyze the internal flow characteristics of vanadium redox flow battery (VRFB). Additionally, we used the variability range coefficient and maximum velocity deviation to check if the flow discharged to the electrode was uniform. In the conventional flow frame, the flow discharged to the electrode has a non-uniformity distribution in the left and right, due to the S-shaped path of the inlet channel. In addition, it was confirmed that the outlet area into the electrode was reduced to 50%, resulting in a high pressure drop. To address this problem, we proposed a design that simplified the flow channel, which significantly improved flow uniformity parameters. The maximum velocity deviations for the existing and new flow channels were 11.89% and 54.16%, respectively. In addition, in the entire flow frame for the new flow channel, the pressure drop decreased by 44% as compared with the existing flow channel.

 Artículos similares

       
 
Chunyun Shen, Jiahao Zhang, Chenglin Ding and Shiming Wang    
By combining computational fluid dynamics (CFD) and surrogate model method (SMM), the relationship between turbine performance and airfoil shape and flow characteristics at low flow rate is revealed. In this paper, the flow velocity tidal energy airfoil ... ver más

 
Shizhen Gao, Zhihua Fan, Jie Mao, Minhui Zheng and Junyi Yang    
It is important to marine ecology research that plankton samples are collected without damage, especially for time series samples. Usually, most fixed-point plankton samplers are made using a pump with paddle blades in order to increase the flow rate. Bu... ver más

 
Gergely Ámon, Katalin Bene, Richard Ray, Zoltán Gribovszki and Péter Kalicz    
More frequent high-intensity, short-duration rainfall events increase the risk of flash floods on steeply sloped watersheds. Where measured data are unavailable, numerical models emerge as valuable tools for predicting flash floods. Recent applications o... ver más
Revista: Water

 
Cundong Xu, Junjiao Tian, Guoxia Wang, Haidong Lian, Rongrong Wang and Xiaomeng Hu    
The vortices, backflow, and siltation caused by sediment-laden flow are detrimental to the safe and efficient operation of pumping stations. To explore the effects of water?sediment two-phase flow on the velocity field, vorticity field, and sediment dist... ver más
Revista: Water

 
Yadong Zhu, Haifeng Jiao, Shihui Wang, Wenbo Zhu, Mengcheng Wang and Songshan Chen    
In order to study the pressure pulsation characteristics and structural dynamic response characteristics of a vertical shaft cross-flow pump, this study used a computational fluid dynamics (CFD) numerical simulation method to analyze the pressure pulsati... ver más
Revista: Water