Resumen
Construction and demolition (C&D) waste has become a research hotspot due to the need for environmental sustainability and strength enhancement of cementitious materials. However, wider applications of C&D waste are limited, as its non-homogeneous surface nature limits its workability. This research evaluated the feasible utilization of C&D waste as aggregates in polypropylene-fiber-reinforced cement-stabilized soil (CSS) under sulfate-alkali activation. CSS specimens incorporated Portland cement and C&D waste in 10%, 20%, and 30% proportions. Also, polypropylene fiber after alkali activation by sodium sulfate (at 0.2%, 0.4%, and 0.8% dosing level) was defined as 1%, 2%, and 4%. Strength enhancement was examined through unconfined compressive strength (UCS) and flexural strength tests at 7, 14 and 28 days. Test results indicated that mechanical properties showed significant improvement with increasing levels of Portland cement and sodium sulfate, while the improvement dropped after excessive addition of C&D waste and polypropylene fiber. Optimal proportioning was determined as 30%, 4%, 20%, and 0.8% for Portland cement, polypropylene fiber, C&D waste, and sodium sulfate, respectively. Scanning electron microscope (SEM) analysis attributed the enhancement to hydration product (ettringite) formation, bridging effect and increased particle friction. Additionally, the decrease in amplification was ascribed to the destruction of interface transition-zone (ITZ) strength, resulting in premature failure.